首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the cardiomyopathy-causing tropomyosin mutations E180G, D175N, and V95A to determine their effects on actomyosin regulation. V95A reduced the ATPase rate when filaments were saturated with regulatory proteins both in the presence and absence of calcium, indicating either a stabilization of the inactive state or an inability to fully populate the active state. Effects of E180G and D175N were more complex. These two mutations increased ATPase rates at sub-saturating concentrations of troponin and tropomyosin as compared to wild type tropomyosin. At higher concentrations of regulatory proteins, ATPase rates became similar to wild type. Normal activation was achieved with the tight-binding myosin analog N-ethylmaleimide-S1, at saturating regulatory protein concentrations. These results suggest that the E180G and D175N mutations reduce the affinity of tropomyosin for actin and also destabilize troponin binding to the actin thin filaments.  相似文献   

2.
S Ly  SS Lehrer 《Biochemistry》2012,51(32):6413-6420
Cardiac α-tropomyosin (Tm) single-site mutations D175N and E180G cause familial hypertrophic cardiomyopathy (FHC). Previous studies have shown that these mutations increase both Ca(2+) sensitivity and residual contractile activity at low Ca(2+) concentrations, which causes incomplete relaxation during diastole resulting in hypertrophy and sarcomeric disarray. However, the molecular basis for the cause and the difference in the severity of the manifested phenotypes of disease are not known. In this work we have (1) used ATPase studies using reconstituted thin filaments in solution to show that these FHC mutants result in an increase in Ca(2+) sensitivity and an increased residual level of ATPase, (2) shown that both FHC mutants increase the rate of cleavage at R133, ~45 residues N-terminal to the mutations, when free and bound to actin, (3) shown that for Tm-E180G, the increase in the rate of cleavage is greater than that for D175N, and (4) shown that for E180G, cleavage also occurs at a new site 53 residues C-terminal to E180G, in parallel with cleavage at R133. The long-range decreases in dynamic stability due to these two single-site mutations suggest increases in flexibility that may weaken the ability of Tm to inhibit activity at low Ca(2+) concentrations for D175N and to a greater degree for E180G, which may contribute to differences in the severity of FHC.  相似文献   

3.
The key events in regulating cardiac muscle contraction involve Ca(2+) binding to and release from cTnC (troponin C) and structural changes in cTnC and other thin filament proteins triggered by Ca(2+) movement. Single mutations L29Q and G159D in human cTnC have been reported to associate with familial hypertrophic and dilated cardiomyopathy, respectively. We have examined the effects of these individual mutations on structural transitions in the regulatory N-domain of cTnC triggered by Ca(2+) binding and dissociation. This study was carried out with a double mutant or triple mutants of cTnC, reconstituted into troponin with tryptophanless cTnI and cTnT. The double mutant, cTnC(L12W/N51C) labeled with 1,5-IAEDANS at Cys-51, served as a control to monitor Ca(2+)-induced opening and closing of the N-domain by F?rster resonance energy transfer (FRET). The triple mutants contained both L12W and N51C labeled with 1,5-IAEDANS, and either L29Q or G159D. Both mutations had minimal effects on the equilibrium distance between Trp-12 and Cys-51-AEDANS in the absence or presence of bound Ca(2+). L29Q had no effect on the closing rate of the N-domain triggered by release of Ca(2+), but reduced the Ca(2+)-induced opening rate. G159D reduced both the closing and opening rates. Previous results showed that the closing rate of cTnC N-domain triggered by Ca(2+) dissociation was substantially enhanced by PKA phosphorylation of cTnI. This rate enhancement was abolished by L29Q or G159D. These mutations alter the kinetics of structural transitions in the regulatory N-domain of cTnC that are involved in either activation (L29Q) or deactivation (G159D). Both mutations appear to be antagonistic toward phosphorylation signaling between cTnI and cTnC.  相似文献   

4.
Three HCM-causing tropomyosin (Tm) mutants (V95A, D175N, and E180G) were examined using the thin-filament extraction and reconstitution technique. The effects of Ca2+, ATP, phosphate, and ADP concentrations on cross-bridge kinetics in myocardium reconstituted with each of these mutants were studied at 25°C, and compared to wild-type (WT) Tm at physiological ionic strength (200 mM). All three mutants showed significantly higher (2–3.5 fold) low Ca2+ tension (TLC) and stiffness than WT at pCa 8.0. High Ca2+ tension (THC) was significantly higher for E180G than that for WT, whereas THC of V95A and D175N was similar to WT; high Ca2+ stiffness (YHC) had the same trend. The Ca2+ sensitivity of isometric force was significantly greater for V95A and E180G than for WT, whereas that of D175N remained the same as for WT; for all mutants, cooperativity was lower than for WT. Nine kinetic constants and the cross-bridge distribution were deduced using sinusoidal analysis. The number of force-generating cross bridges was similar among the D175N, E180G, and WT Tm forms, but it was significantly larger in the case of V95A than WT. We conclude that the increased number of actively cycling cross bridges at pCa 8 is the major cause of Tm mutation-related HCM pathogenesis, which may result in diastolic dysfunction. Decreased contractility (Tact) in V95A and D175N may further contribute to the severity of myocyte hypertrophy and related prognosis of the disease.  相似文献   

5.
Differential scanning calorimetry was used to investigate the thermal unfolding of native alpha-tropomyosin (Tm), wild-type alpha-Tm expressed in Escherichia coli and the wild-type alpha-Tm carrying either of two missense mutations associated with familial hypertrophic cardiomyopathy, D175N or E180G. Recombinant alpha-Tm was expressed with an N-terminal Ala-Ser extension to substitute for the essential N-terminal acetylation of the native Tm. Native and Ala-Ser-Tm were indistinguishable in our assays. In the absence of F-actin, the thermal unfolding of Tm was reversible and the heat sorption curve of Tm with Cys-190 reduced was decomposed into two separate calorimetric domains with maxima at approximately 42 and 51 degrees C. In the presence of phalloidin-stabilized F-actin, a new cooperative transition appears at 46-47 degrees C and completely disappears after the irreversible denaturation of F-actin. A good correlation was found to exist between the maximum of this peak and the temperature of half-maximal dissociation of the F-actin/Tm complex as determined by light scattering experiments. We conclude that Tm thermal denaturation only occurs upon its dissociation from F-actin. In the presence of F-actin, D175N alpha-Tm shows a melting profile and temperature dependence of dissociation from F-actin similar to those for wild-type alpha-Tm. The actin-induced stabilization of E180G alpha-Tm is significantly less than for wild-type alpha-Tm and D175N alpha-Tm, and this property could contribute to the more severe myopathy phenotype reported for this mutation.  相似文献   

6.
To understand the molecular mechanism by which the hypertrophic cardiomyopathy-causing Asp175Asn and Glu180Gly mutations in α-tropomyosin alter contractile regulation, we labeled recombinant wild type and mutant α-tropomyosins with 5-iodoacetamide-fluorescein and incorporated them into the ghost muscle fibers. The orientation and mobility of the probe were studied by polarized fluorimetry at different stages of the ATPase cycle. Multistep alterations in the position and mobility of wild type tropomyosin on the thin filaments during the ATP cycle were observed. Both mutations were found to shift tropomyosin strands further towards the open position and to change the affinity of tropomyosin for actin, with the effect of the Glu180Gly mutation being greater than Asp175Asn, showing an increase in the binding strong cross-bridges to actin during the ATPase cycle. These structural changes to the thin filament are likely to underlie the observed increased Ca2+-sensitivity caused by these mutations which initiates the disease remodeling.  相似文献   

7.
The N terminus of skeletal myosin light chain 1 and the cardiomyopathy loop of human cardiac myosin have been shown previously to bind to actin in the presence and absence of tropomyosin (Patchell, V. B., Gallon, C. E., Hodgkin, M. A., Fattoum, A., Perry, S. V., and Levine, B. A. (2002) Eur. J. Biochem. 269, 5088-5100). We have extended this work and have shown that segments corresponding to other regions of human cardiac beta-myosin, presumed to be sites of interaction with F-actin (residues 554-584, 622-646, and 633-660), likewise bind independently to actin under similar conditions. The binding to F-actin of a peptide spanning the minimal inhibitory segment of human cardiac troponin I (residues 134-147) resulted in the dissociation from F-actin of all the myosin peptides bound to it either individually or in combination. Troponin C neutralized the effect of the inhibitory peptide on the binding of the myosin peptides to F-actin. We conclude that the binding of the inhibitory region of troponin I to actin, which occurs during relaxation in muscle when the calcium concentration is low, imposes conformational changes that are propagated to different locations on the surface of actin. We suggest that the role of tropomyosin is to facilitate the transmission of structural changes along the F-actin filament so that the monomers within a structural unit are able to interact with myosin.  相似文献   

8.
The relationship between tropomyosin thermal stability and thin filament activation was explored using two N-domain mutants of alpha-striated muscle tropomyosin, A63V and K70T, each previously implicated in familial hypertrophic cardiomyopathy. Both mutations had prominent effects on tropomyosin thermal stability as monitored by circular dichroism. Wild type tropomyosin unfolded in two transitions, separated by 10 degrees C. The A63V and K70T mutations decreased the melting temperature of the more stable of these transitions by 4 and 10 degrees C, respectively, indicating destabilization of the N-domain in both cases. Global analysis of all three proteins indicated that the tropomyosin N-domain and C-domain fold with a cooperative free energy of 1.0-1.5 kcal/mol. The two mutations increased the apparent affinity of the regulatory Ca2+ binding sites of thin filament in two settings: Ca2+-dependent sliding speed of unloaded thin filaments in vitro (at both pH 7.4 and 6.3), and Ca2+ activation of the thin filament-myosin S1 ATPase rate. Neither mutation had more than small effects on the maximal ATPase rate in the presence of saturating Ca2+ or on the maximal sliding speed. Despite the increased tropomyosin flexibility implied by destabilization of the N-domain, neither the cooperativity of thin filament activation by Ca2+ nor the cooperative binding of myosin S1-ADP to the thin filament was altered by the mutations. The combined results suggest that a more dynamic tropomyosin N-domain influences interactions with actin and/or troponin that modulate Ca2+ sensitivity, but has an unexpectedly small effect on cooperative changes in tropomyosin position on actin.  相似文献   

9.
I K Chandy  J C Lo  R D Ludescher 《Biochemistry》1999,38(29):9286-9294
Polarized phosphorescence from the triplet probe erythrosin-5-iodoacetamide attached to sulfhydryls in rabbit skeletal and cardiac muscle tropomyosin (Tm) was used to measure the microsecond rotational dynamics of these tropomyosins in a complex with F-actin. The steady-state phosphorescence anisotropy of skeletal tropomyosin on F-actin was 0.025 +/- 0.005 at 20 degrees C; the comparable anisotropy for cardiac tropomyosin was 0.010 +/- 0. 003. Measurements of the anisotropy as a function of temperature and solution viscosity (modulated by addition of glycerol) indicated that both skeletal and cardiac tropomyosin undergo complex rotational motions on the surface of F-actin. Models assuming either long axis rotation of a rigid rod or torsional twisting of a flexible rod adequately fit these data; both analyses indicated that cardiac Tm is more mobile than skeletal Tm and that the increased mobility on the surface of F-actin reflected either the rotational motion of a smaller physical unit or the torsional twisting of a less rigid molecule. The binding of myosin heads (S1) to the Tm-F-actin complexes increased the anisotropy to 0.049 +/- 0.004 for skeletal and 0.054 +/- 0.007 for cardiac tropomyosin. The titration of the skeletal tropomyosin-F-actin complex by S1 showed a break at an S1/actin ratio of 0.14; this complex had an anisotropy of 0.040 +/- 0.007, suggesting that one bound head effectively restricted the motion of each skeletal tropomyosin. A similar titration with cardiac tropomyosin reached a plateau at an S1/actin ratio of 0.4, suggesting that 2-3 myosin heads are required to immobilize cardiac Tm. Surface mobility is predicted by structural models of the interaction of tropomyosin with the actin filament while the decrease in tropomyosin mobility upon S1 binding is consistent with current theories for the proposed role of myosin binding in the mechanism of tropomyosin-based regulation of muscle contraction.  相似文献   

10.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

11.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

12.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

13.
Missense mutations in human TPM3 gene encoding γ-tropomyosin expressed in slow muscle type 1 fibers, were associated with three types of congenital myopathies-nemaline myopathy, cap disease and congenital fiber type disproportion. Functional effects of the following substitutions: Leu100Met, Ala156Thr, Arg168His, Arg168Cys, Arg168Gly, Lys169Glu, and Arg245Gly, were examined in biochemical assays using recombinant tropomyosin mutants and native proteins isolated from skeletal muscle. Most, but not all, mutations decreased the affinity of tropomyosin for actin alone and in complex with troponin (±Ca(2+)). All studied tropomyosin mutants reduced Ca-induced activation but had no effect on the inhibition of actomyosin cross-bridges. Ca(2+)-sensitivity of the actomyosin interactions, as well as cooperativity of myosin-induced activation of the thin filament was affected by individual tropomyosin mutants with various degrees. Decreased motility of the reconstructed thin filaments was a result of combined functional defects caused by myopathy-related tropomyosin mutants. We conclude that muscle weakness and structural abnormalities observed in TPM3-related congenital myopathies result from reduced capability of the thin filament to fully activate actin-myosin cross-bridges.  相似文献   

14.
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.  相似文献   

15.
Six missense mutations in human cardiac troponin I (cTnI) were recently found to cause restrictive cardiomyopathy (RCM). We have bacterially expressed and purified these human cTnI mutants and examined their functional and structural consequences. Inserting the human cTnI into skinned cardiac muscle fibers showed that these mutations had much greater Ca2+-sensitizing effects on force generation than the cTnI mutations in hypertrophic cardiomyopathy (HCM). The mutation K178E in the second actin-tropomyosin (Tm) binding region showed a particularly potent Ca2+-sensitizing effect among the six RCM-causing mutations. Circular dichroism and nuclear magnetic resonance spectroscopy revealed that this mutation does not extensively affect the structure of the whole cTnI molecule, but induces an unexpectedly subtle change in the structure of a region around the mutated residue. The results indicate that the K178E mutation has a localized effect on a structure that is critical to the regulatory function of the second actin-Tm binding region of cTnI. The present study also suggests that both HCM and RCM involving cTnI mutations share a common feature of increased Ca2+ sensitivity of cardiac myofilament, but more severe change in Ca2+ sensitivity is associated with the clinical phenotype of RCM.  相似文献   

16.
Hypertrophic cardiomyopathy (HCM), characterized by cardiac hypertrophy and contractile dysfunction, is a major cause of heart failure. HCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). To understand how the HCM-causing Asp175Asn and Glu180Gly mutations in α-tropomyosin affect on actin-myosin interaction during the ATPase cycle, we labeled the SH1 helix of myosin subfragment-1 and the actin subdomain-1 with the fluorescent probe N-iodoacetyl-N′-(5-sulfo-1-naphtylo)ethylenediamine. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized fluorescence. For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. Wild-type α-tropomyosin increases the amplitude of the SH1 helix and subdomain-1 movements during the ATPase cycle, indicating the enhancement of the efficiency of the work of cross-bridges. Both mutant TMs increase the proportion of the strong-binding sub-states, with the effect of the Glu180Gly mutation being greater than that of Asp175Asn. It is suggested that the alteration in the concerted conformational changes of actomyosin is likely to provide the structural basis for the altered cardiac muscle contraction.  相似文献   

17.
Hypertrophic cardiomyopathy (HCM), characterized by cardiac hypertrophy and contractile dysfunction, is a major cause of heart failure. HCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). To understand how the HCM-causing Asp175Asn and Glu180Gly mutations in α-tropomyosin affect on actin-myosin interaction during the ATPase cycle, we labeled the SH1 helix of myosin subfragment-1 and the actin subdomain-1 with the fluorescent probe N-iodoacetyl-N'-(5-sulfo-1-naphtylo)ethylenediamine. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized fluorescence. For the first time, the effect of these α-tropomyosins on the mobility and rotation of subdomain-1 of actin and the SH1 helix of myosin subfragment-1 during the ATP hydrolysis cycle have been demonstrated directly by polarized fluorimetry. Wild-type α-tropomyosin increases the amplitude of the SH1 helix and subdomain-1 movements during the ATPase cycle, indicating the enhancement of the efficiency of the work of cross-bridges. Both mutant TMs increase the proportion of the strong-binding sub-states, with the effect of the Glu180Gly mutation being greater than that of Asp175Asn. It is suggested that the alteration in the concerted conformational changes of actomyosin is likely to provide the structural basis for the altered cardiac muscle contraction.  相似文献   

18.
The ventricular isoform of human cardiac regulatory light chain (HCRLC) has been shown to be one of the sarcomeric proteins associated with familial hypertrophic cardiomyopathy (FHC), an autosomal dominant disease characterized by left ventricular and/or septal hypertrophy, myofibrillar disarray, and sudden cardiac death. Our recent studies have demonstrated that the properties of isolated HCRLC could be significantly altered by the FHC mutations and that their detrimental effects depend upon the specific position of the missense mutation. This report reveals that the Ca(2+) sensitivity of myofibrillar ATPase activity and steady-state force development are also likely to change with the location of the specific FHC HCRLC mutation. The largest effect was seen for the two FHC mutations, N47K and R58Q, located directly in or near the single Ca(2+)-Mg(2+) binding site of HCRLC, which demonstrated no Ca(2+) binding compared with wild-type and other FHC mutants (A13T, F18L, E22K, P95A). These two mutants when reconstituted in porcine cardiac muscle preparations increased Ca(2+) sensitivity of myofibrillar ATPase activity and force development. These results suggest the importance of the intact Ca(2+) binding site of HCRLC in the regulation of cardiac muscle contraction and imply its possible role in the regulatory light chain-linked pathogenesis of FHC.  相似文献   

19.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   

20.
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号