首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.  相似文献   

6.
The orange-spotted grouper (Epinephelus coioides), a favorite marine food fish, is widely cultured in China and Southeast Asian countries. However, little is known about its acute phase response (APR) caused by viral diseases. Serum amyloid A (SAA) is a major acute phase protein (APP). In this study, a new SAA homologous (EcSAA) gene was cloned from grouper, E. coioides, by rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA sequence of SAA was 508 bp and contained a 363 bp open reading frame (ORF) coding for a protein of 121 aa. Similar to other fish known SAA genes, the EcSAA gene contained four exons and three introns. Quantitative real-time PCR analysis revealed that EcSAA mRNA is predominately expressed in liver and gill of grouper. Furthermore, the expression of EcSAA was differentially up-regulated in liver after infection with Staphyloccocus aureus, Vibrio vulnificus, Vibrio parahaemolyticus, Saccharomyces cerevisiae and Singapore grouper iridovirus (SGIV). Recombinant EcSAA (rEcSAA) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-EcSAA serum preparation. The rEcSAA fusion protein was demonstrated to bind to all tested bacteria and yeast, and inhibit the replication of SGIV. Overexpression of EcSAA in grouper spleen (GS) cells could also inhibit the replication of SGIV. These results suggest that EcSAA may be an important molecule in the innate immunity of grouper.  相似文献   

7.
Summary. Involvement of individual antioxidant proteins (AOXP) and antioxidants in the differentiation process has been already reported. A systematic search strategy for detecting differentially regulated AOXP in neuronal differentiation, however, has not been published so far. The aim of this study was to provide an analytical tool identifying AOXP and to generate a differentiation-related AOXP expressional pattern. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments: We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical (MALDI-TOF-TOF) identification of proteins to generate a map of AOXP. 16 AOXP were unambiguously determined in both cell lines; catalase, thioredoxin domain-containing protein 4 and hypothetical glutaredoxin/glutathione S-transferase C terminus-containing protein were detectable in the undifferentiated cells only. Five AOXP were observed in both, undifferentiated and differentiated cells and thioredoxin, thioredoxin-like protein p19, thioredoxin reductase 1, superoxide dismutases (Mn and Cu-Zn), glutathione synthetase, glutathione S-transferase P1 and Mu1 were detected in differentiated cells exclusively. Herein a differential expressional pattern is presented that reveals so far unpublished antioxidant principles involved in neuronal differentiation by a protein chemical approach, unambiguously identifying AOXP. This finding not only shows concomitant determination of AOXP but also serves as an analytical tool and forms the basis for design of future studies addressing AOXP and differentiation per se.  相似文献   

8.
9.
The thioredoxin/thioredoxin reductase system has been studied as regenerative machinery for proteins inactivated by oxidative stress in vitro and in cultured endothelial cells. Mammalian glyceraldehyde-3-phosphate dehydrogenase was used as the main model enzyme for monitoring the oxidative damage and the regeneration. Thioredoxin and its reductase purified from bovine liver were used as the regenerating system. The physiological concentrations (2-14 microM) of reduced thioredoxin, with 0.125 microM thioredoxin reductase and 0.25 mM NADPH, regenerated H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase and other mammalian enzymes almost completely within 20 min at 37 degrees C. Although the treatment of endothelial cells with 0.2-12 mM H2O2 for 5 min resulted in a marked decrease in the activity of glyceraldehyde-3-phosphate dehydrogenase, it had no effect on the activities of thioredoxin and thioredoxin reductase. Essentially all of the thioredoxin in endothelial cells at control state was in the reduced form and 70-85% remained in the reduced form even after the H2O2 treatment. The inactivated glyceraldehyde-3-phosphate dehydrogenase in a cell lysate prepared from the H2O2-treated endothelial cells was regenerated by incubating the lysate with 3 mM NADPH at 37 degrees C and the antiserum raised against bovine liver thioredoxin inhibited the regeneration. The inhibition of thioredoxin reductase activity by 13-cis-retinoic acid resulted in a decrease in the regeneration of glyceraldehyde-3-phosphate dehydrogenase in the H2O2-treated endothelial cells. The present findings provide evidence that thioredoxin is involved in the regeneration of proteins inactivated by oxidative stress in endothelial cells.  相似文献   

10.
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH‐dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC‐mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2‐Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC‐mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.  相似文献   

11.
Thioredoxin is a ubiquitous small protein known to protect cells and tissues against oxidative stress. However, its exact antioxidant nature has not been elucidated. In this report, we present evidence that human thioredoxin is a powerful singlet oxygen quencher and hydroxyl radical scavenger. Human thioredoxin at 3 microM caused 50% inhibition of TEMP-(1)O(2) (TEMPO) adduct formation in a photolysis EPR study. In contrast, Escherichia coli thioredoxin caused 50% inhibition of TEMPO formation at 80 microM. Both E. coli thioredoxin and human thioredoxin inhibited (*)OH dependent DMPO-OH formation as demonstrated by EPR spectrometry. The quenching of (1)O(2) or scavenging of (*)OH was not dependent upon the redox state of thioredoxin. Using a human thioredoxin in which the structural cysteines were mutated to alanine, Trx-C3A, we show that structural cysteines that do not take part in the catalytic functions of the protein are also important for its reactive oxygen scavenging properties. In addition, using a quadruple mutant Trx-C4A, where one of the catalytic cysteines, C35 was mutated to alanine in addition to the mutated structural cysteines, we demonstrated that catalytic cysteines are also required for the scavenging action of thioredoxin. Identification of thioredoxin as a (1)O(2) quencher and (*)OH scavenger may be of significant importance in explaining various redox-related antioxidant functions of thioredoxin.  相似文献   

12.
The aim of the study was to estimate the significance of oxidative/nitrosative damage and expression of antioxidant enzymes in renal cell carcinomas (RCC). For this we investigated immunohistochemically six antioxidant enzymes (AOEs) including MnSOD, ECSOD, thioredoxin, thioredoxin reductase, and gammaglutamyl cysteine synthetase heavy and light chain in 138 RCCs. As an indicator of oxidative/nitrosative damage, sections were stained with an antibody to nitrotyrosine. The extent of apoptosis was evaluated by TUNEL method and proliferation by immunohistochemistry to Ki67. Variable expression of all AOEs could be seen in RCC with expression of MnSOD being strongest. Nitrotyrosine was significantly associated with high grade tumors. MnSOD was associated with tumors of a lower stage. Cases showing ECSOD reactivity had higher and cases expressing thioredoxin lower apoptotic index than other tumors. No association with patient prognosis was observed. According to the results renal cell carcinomas show oxidative/nitrosative damage which, according to nitrotyrosine staining, was higher in high grade tumors. Of AOEs, MnSOD was more abundantly expressed in low stage tumors suggesting that its antioxidant function could play a main role to prevent development of oxidative damage leading to more aggressive tumors.  相似文献   

13.
14.
Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS sig-nal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.  相似文献   

15.
Chlorogenic acid (CGA) is one of the most abundant dietary polyphenols, possessing well-known antioxidant capacity. The present study is designed to observe the protection provided by CGA against acetaminophen (AP)-induced liver injury in mice in vivo and the underlying mechanisms engaged in this process. Serum transaminases analysis and liver histological evaluation demonstrated the protection of CGA against AP-induced liver injury. CGA treatment decreased the increased number of liver apoptotic cells induced by AP in a dose-dependent manner. CGA also inhibited AP-induced cleaved activation of caspase-3, 7. Moreover, CGA reversed AP-decreased liver reduced glutathione (GSH) levels, glutamate-cysteine ligase (GCL) and glutathione reductase activity. Further results showed that CGA increased mRNA and protein expression of the catalytic subunit of GCL (GCLC), thioredoxin (Trx) 1/2 and thioredoxin reductase (TrxR) 1. Furthermore, CGA abrogated AP-induced phospholyated activation of ERK1/2, c-Jun N-terminal kinase (JNK), p38 kinases and molecular signals upstream. The results of this study demonstrate that CGA counteracts AP-induced liver injury at various levels by preventing apoptosis and oxidative stress damage, and more specifically, both the GSH and Trx antioxidant systems and the mitogen-activated protein kinase (MAPK) signaling cascade appear to be engaged in this protective mechanism.  相似文献   

16.
17.
Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome‐wide screening of RA‐responsive genes by in silico analysis of RA‐response elements, and identified 26 RA‐responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all‐trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP‐mediated HSC activation was suppressed by antioxidant N‐acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.  相似文献   

18.
硫氧还蛋白与心血管疾病   总被引:4,自引:0,他引:4  
硫氧还蛋白是细胞内最重要的二硫键还原酶,对维持细胞内蛋白质的还原状态并正常发挥功能着重要的作用,此外。硫氧还蛋白、硫氧还蛋白还原酶和硫氧还蛋白过氧化物酶组成了细胞内最重要的抗氧化系统之一,在对抗细胞的氧化应激上起着重要作用。心血管疾病是威胁人类健康的主要疾病,它与炎症反应和氧化应激有着密切的联系。文章将从硫氧还蛋白的抗氧化、抗炎、抗细胞凋亡,调控与炎症基因表达有关的核转录因子的转录活性,以及调节细胞内蛋白质的亚硝基化等诸多方面阐述硫氧还蛋白在防御心血管疾病方面可能具有的生物学功能。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号