首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the “CpG island shore” in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.  相似文献   

2.
Zheng Q  Huang G  Yang J  Xu Y  Guo C  Xi Y  Pan Z  Wang J 《Biological chemistry》2007,388(7):755-763
Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.  相似文献   

3.
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.  相似文献   

4.
We have used cytokine protein array to analyze the secretion of cytokines from an osteoblastic clone derived from human umbilical cord blood mesenchymal stem cells (MSCs) cultured in an osteogenic differentiation medium. The analysis demonstrated the unexpected ability of osteoblast committed cells and their early progenitors to produce significant amounts of a range of soluble immune mediators without in vitro exposure to clinically relevant bacterial pathogens. The cells were expanded and their osteogenic potential analyzed over 45 days of culture was revealed by the expression of osteoblast-specific markers (alkaline phosphatase and Runx2), and by matrix mineralization. Over this culture period, the cells secreted particularly high levels of IL-8, MCP-1 and VEGF, but did not express IL-2, IL-7, IL-17, eotaxin, G-CSF and IFN-gamma. These findings should encourage the use of human umbilical cord blood as a potential stem cells source for bone regeneration.  相似文献   

5.
6.
We previously reported the purification, culture-expansion, and osteogenic differentiation potential of mesenchymal progenitor cells (MPCs) derived from human bone marrow. As a first step to establishing the phenotypic characteristics of MPCs, we reported on the identification of unique cell surface proteins which were detected with monoclonal antibodies. In this study, the phenotypic characterization of human marrow-derived MPCs is further established through the identification of a cytokine expression profile under standardized growth medium conditions and in the presence of regulators of the osteogenic and stromal cell lineages, dexamethasone and interleukin-1α (IL-1α), respectively. Constitutively expressed cytokines in this growth phase include G-CSF, SCF, LIF, M-CSF, IL-6, and IL-11, while GM-CSF, IL-3, TGF-β2, and OSM were not detected in the growth medium. Exposure of cells in growth medium to dexamethasone resulted in a decrease in the expression of LIF, IL-6, and IL-11. These cytokines have been reported to exert influence on the differentiation of cells derived from the bone marrow stroma through target cell receptors that utilize gp130-associated signal transduction pathways. Dexamethasone had no effect on the other cytokines expressed under growth medium conditions and was not observed to increase the expression of any of the cytokines measured in this study. In contrast, IL-1α increased the expression of G-CSF, M-CSF, LIF, IL-6, and IL-11 and induced the expression of GM-CSF. IL-1α had no effect on SCF expression and was not observed to decrease the production of any of the cytokines assayed. These data indicate that MPCs exhibit a distinct cytokine expression profile. We interpret this cytokine profile to suggest that MPCs serve specific supportive functions in the microenvironment of bone marrow. MPCs provide inductive and regulatory information which are consistent with the ability to support hematopoiesis, and also supply autocrine, paracrine, and juxtacrine factors that influence the cells of the marrow microenvironment itself. In addition, the cytokine profiles expressed by MPCs, in response to dexamethasone and IL-1α, identify specific cytokines whose levels of expression change as MPCs differentiate or modulate their phenotype during osteogenic or stromagenic lineage entrance/progression. © 1996 Wiley-Liss, Inc.  相似文献   

7.
8.
Osteogenic supplements are a requirement for osteoblastic cell differentiation during in vitro culture of human calvarial suture-derived cell populations. We investigated the ability of ascorbic acid and beta-glycerophosphate with and without the addition of dexamethasone to stimulate in vivo-like osteoblastic differentiation. Cells were isolated from unfused and prematurely fused suture tissue from patients with syndromic and non-syndromic craniosynostosis and cultured in each osteogenic medium for varying lengths of time. The effect of media supplementation was investigated with respect to the ability of cells to form mineralised bone nodules and the expression of five osteodifferentiation marker genes (COL1A1, ALP, BSP, OC and RUNX2), and five genes that are differentially expressed during human premature suture fusion (GPC3, RBP4, C1QTNF3, WIF1 and FGF2). Cells from unfused sutures responded more slowly to osteogenic media but formed comparable bone nodules to fused suture-derived cells after 16 days of culture in either osteogenic media. However, gene expression differed between unfused and fused suture-derived cells, as did expression in each osteogenic medium. When compared to expression in the explant tissue of origin, neither medium induced a level or profile of gene expression similar to that seen in vivo. Overall, our results demonstrate that cells from the same suture that are isolated during different stages of morphogenesis in vivo, despite being de-differentiated to a similar level in vitro, respond uniquely and differently to each osteogenic medium. Further, we suggest that neither cell culture medium recapitulates differentiation via activation of the same genetic cascades as occurs in vivo.  相似文献   

9.
The osteoporosis that occurs with aging is associated with reduced number and activity of osteoblastic cells. Aging, menopause, and osteoporosis are correlated with increased oxidative stress and reduced antioxidant defense mechanisms. We previously demonstrated that oxidative stress induced by a variety of compounds such as xanthine/xanthine oxidase (XXO) and minimally oxidized LDL (MM-LDL) inhibit the osteogenic differentiation of osteoprogenitor cells. Oxysterols are a family of products derived from cholesterol oxidation that have important biological activities. Recently, we reported that a specific oxysterol combination consisting of 22(S)- or 22(R)-hydroxycholesterol and 20(S)-hydroxycholesterol has potent osteogenic properties in vitro when applied to osteoprogenitor cells including M2-10B4 (M2) marrow stromal cells. We now demonstrate that this osteogenic combination of oxysterols prevents the adverse effects of oxidative stress on differentiation of M2 cells into mature osteoblastic cells. XXO and MM-LDL inhibited the osteogenic differentiation of M2 cells, demonstrated by the inhibition of markers of osteogenic differentiation: alkaline phosphatase activity, osteocalcin expression and mineralization. Treatment of M2 cells with osteogenic oxysterol combination 22(S)- and 20(S)-hydroxycholesterol both blocked and reversed the inhibition of osteogenic differentiation produced by XXO and MM-LDL in these cells. The protective effect of the oxysterols against oxidative stress was dependent on cyclooxygenase 1 and was associated with the osteogenic property of the oxysterols. These findings further demonstrate the ability of the osteogenic oxysterols to positively regulate osteogenic differentiation of cells, and suggests that the use of these compounds may be a novel strategy to prevent the adverse effects of oxidative stress on osteogenesis.  相似文献   

10.
Characterization of directed differentiation protocols is a prerequisite for understanding embryonic stem cell behavior, as they represent an important source for cell-based regenerative therapies. Studies have investigated the osteogenic potential of human embryonic stem cells (HESCs), building upon those using pre-osteoblastic cells, however no consensus exists as to whether differentiating HESCs behave in a similar manner to the traditionally used osteoblastic progenitors. Thus, the aim of the current investigation was to define the gene expression pattern of osteoblastic differentiating HESCs, treated with ascorbic acid phosphate, β-glycerophosphate and dexamethasone over a 25 day period. Characterization of the gene expression dynamics revealed a phasic pattern of bone-associated protein synthesis. Collagen type I and osteopontin were initially expressed in proliferating immature cells, whereas osterix was up-regulated at the end of active cellular proliferation. Subsequently, mineralization-associated proteins, bone sialoprotein and osteocalcin were detected. In light of this dynamic expression pattern, we concluded that two distinguishable phases occurred during osteogenic HESC differentiation; first, cellular proliferation and secretion of a pre-maturational matrix, and second the appearance of osteoprogenitors with characteristic extracellular matrix synthesis. Establishment of this model provided the foundation of a time-frame for the additional supplementation with growth factors, BMP2 and VEGF. BMP2 induced the expression of principle osteogenic factors, such as osterix, bone sialoprotein and osteocalcin, whereas VEGF had the converse effect on the gene expression pattern.  相似文献   

11.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

12.
13.
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.  相似文献   

14.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

15.
16.
17.
Leucine-rich amelogenin peptide (LRAP), an alternatively spliced amelogenin protein, possesses a signaling property shown to induce osteogenic differentiation. In the current study, we detected LRAP expression during osteogenesis of wild-type (WT) embryonic stem (ES) cells and observed the absence of LRAP expression in amelogenin-null (KO) ES cells. We explored the signaling effect of LRAP on wild-type ES cells, and the ability of LRAP to rescue the impaired osteogenesis phenotype observed in KO ES cells. Our data indicate that LRAP treatment of WT and KO ES cells induces a significant increase in mineral matrix formation, and significant increases in bone sialoprotein and osterix gene expression. In addition, the amelogenin KO phenotype is partially rescued by the addition of exogenous LRAP. These data suggest a unique function of LRAP during ES cell differentiation along osteogenic lineage.  相似文献   

18.
19.
20.
Dental pulp cells release adenosine triphosphate (ATP) in response to intrapulpal pressure and the amount released depends on the magnitude of the pressure. ATP regulates the differentiation of stem cells into adipocytes and osteoblasts. However, it is unknown whether extracellular ATP influences the stemness and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). Therefore, this study investigated the effects of extracellular ATP at a low (0.1 μM) and high (10 μM) concentration on the stemness and osteogenic differentiation of SHEDs. Cells were cultured in either growth medium or osteogenic medium with or without 0.1–10 μM ATP. In growth medium, both concentrations of ATP increased the mRNA expression of pluripotent and osteogenic markers. In contrast, in osteogenic medium, 0.1 μM ATP enhanced in vitro mineralization, whereas 10 μM ATP inhibited this process. In addition, 10 μM ATP stimulated the mRNA expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), an enzyme that regulates the phosphate/pyrophosphate ratio. Thus, depending on the growth condition and its concentration, ATP stimulated stemness and in vitro mineralization or inhibited mineralization. In growth medium, both ATP concentrations stimulated pluripotent and osteogenic marker gene expression. However, in osteogenic medium, a biphasic effect was found on in vitro mineralization; the low concentration stimulated, whereas the high concentration inhibited, mineralization. We propose that ATP released due to mechanical stress modulates the stemness and differentiation of SHEDs. J. Cell. Biochem. 119: 488–498, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号