首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter.  相似文献   

2.
Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A. Enterocin NKR-5-3B (6316.4 Da) showed a broad antimicrobial spectrum, and enterocin NKR-5-3C (4512.8 Da) showed high activity against Listeria. Enterocin NKR-5-3D (2843.5 Da), showing high homology to an inducing peptide produced by Lactobacillus sakei 5, induced the production of the enterocins. The enterocins showed different antimicrobial spectra and intensities. E. faecium NKR-5-3 concomitantly produced enterocins NKR-5-3A, B, C, and D which probably belong to different classes of bacteriocins. Furthermore, NKR-5-3 production was induced by enterocin NKR-5-3D.  相似文献   

3.
Enterococcus faecalis NKR-4-1 isolated from pla-ra produces a novel two-peptide lantibiotic, termed enterocin W, comprising Wα and Wβ. The structure of enterocin W exhibited similarity with that of plantaricin W. The two peptides acted synergistically, and their order of binding to the cell membrane was important for their inhibitory activity.  相似文献   

4.
AIMS: To isolate, characterize and identify bacteriocins from lactic acid bacteria in soil. METHODS AND RESULTS: Thirty-four acid-producing bacteria were isolated from 87 soil samples. Antibacterial activities were detected, and one strain, L28-1 produced a bacteriocin that was active against some Gram-positive bacteria. L28-1 was identified as Enterococcus durans by 16S rDNA sequence analysis and API50CHL. This bacteriocin did not lose its activity after autoclaving (121 degrees C for 15 min), but was inactivated by protease K. The bacteriocin was purified by hydrophobic column chromatography, and Sep-Pak C(18). Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the partially purified bacteriocin contained numerous protein bands. Two bands that displayed antibacterial activities were c. 3.4 and 2.5 kDa in size. In this work, the 3.4-kDa bacteriocin was analysed with N-terminal amino acid and DNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. The results indicated that the 3.4-kDa bacteriocin of Ent. durans L28-1 is a new natural enterocin variant. CONCLUSIONS: Enterococcus durans L28-1 produced a new bacteriocin. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a novel bacteriocin that is produced by Ent. durans that has potential for use as a food preservative.  相似文献   

5.
On the bacteriocin plasmid p9B4-6 of Lactococcus lactis subsp. cremoris 9B4, a third bacteriocin determinant was identified. The genes encoding bacteriocin production and immunity resided on a 1.2-kb CelII-ScaI fragment and were located adjacent to one of two previously identified bacteriocin operons (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). The fragment was sequenced and analyzed by deletion and mutation analyses. The bacteriocin determinant consisted of two genes which were transcribed as an operon. The first gene (lcnB), containing 68 codons, was involved in bacteriocin activity. The second gene (lciB) contained 91 codons and was responsible for immunity. The specificity of this novel bacteriocin, designated lactococcin B, was different from that of the other two bacteriocins specified by p9B4-6. Part of the nucleotide sequence of the lactococcin B operon was similar to a nucleotide sequence also found in the two other bacteriocin operons of p9B4-6. This conserved region encompassed a nucleotide sequence upstream of the bacteriocin gene and the 5' part of the gene. When the lactococcin B operon was expressed in Escherichia coli by using a T7 RNA polymerase-specific promoter, antagonistic activity could be detected.  相似文献   

6.
On the bacteriocin plasmid p9B4-6 of Lactococcus lactis subsp. cremoris 9B4, a third bacteriocin determinant was identified. The genes encoding bacteriocin production and immunity resided on a 1.2-kb CelII-ScaI fragment and were located adjacent to one of two previously identified bacteriocin operons (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). The fragment was sequenced and analyzed by deletion and mutation analyses. The bacteriocin determinant consisted of two genes which were transcribed as an operon. The first gene (lcnB), containing 68 codons, was involved in bacteriocin activity. The second gene (lciB) contained 91 codons and was responsible for immunity. The specificity of this novel bacteriocin, designated lactococcin B, was different from that of the other two bacteriocins specified by p9B4-6. Part of the nucleotide sequence of the lactococcin B operon was similar to a nucleotide sequence also found in the two other bacteriocin operons of p9B4-6. This conserved region encompassed a nucleotide sequence upstream of the bacteriocin gene and the 5' part of the gene. When the lactococcin B operon was expressed in Escherichia coli by using a T7 RNA polymerase-specific promoter, antagonistic activity could be detected.  相似文献   

7.
Aims:  Screening and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi, a traditional Korean fermented vegetable.
Methods and Results:  A total of 1000 lactic acid bacteria were isolated from various Kimchi samples and screened for the production of bacteriocin. Pediocin K23-2, a bacteriocin produced by the Pediococcus pentosaceus K23-2 strain, showed strong inhibitory activity against Listeria monocytogenes . The bacteriocin activity remained unchanged after 15 min of heat treatment at 121°C or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The bacteriocin was maximally produced at 37°C, when the pH of the culture broth was maintained at 5·0 during the fermentation, although the optimum pH for growth was 7·0. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.
Conclusions:  Pediococcus pentosaceus K23-2 isolated from Kimchi produces a bacteriocin, which shares similar characteristics to the Class IIa bacteriocins. The bacteriocin is heat stable and shows wide antimicrobial activity against Gram-positive bacteria, especially L. monocytogenes .
Significance and Impact of the Study:  Pediocin K23-2 and pediocin K23-2-producing P. pentosaceus K23-2 could potentially be used in the food and feed industries as natural biopreservatives, and for probiotic application to humans or livestock.  相似文献   

8.
AIMS: To characterize and to purify a bacteriocin produced by Lactobacillus acidophilus strain with its activity restricted to Gram-positive bacteria. METHODS AND RESULTS: Native acidocin CH5, a bacteriocin produced by L. acidophilus CH5 an isolate from a dairy starter culture forms in MRS (Oxoid, Basingstoke, UK) broth high-molecular weight aggregates which can dissociate into smaller units (retained by 5 kDa membrane) with higher activity. Acidocin CH5 was purified using combinations of chromatographic methods based on hydrophobic and cation exchange principles and the N-terminal region was sequenced. CONCLUSIONS: Based on our results it is evident that acidocin CH5 belongs, according to bacteriocin classification, to the class II bacteriocins with identical N-terminal amino acid sequence described in the literature previously. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has provided further data on bacteriocin acidocin CH5 from class II with wide spectrum of antimicrobial activity atypical for bacteriocins produced by L. acidophilus sharing the same homology.  相似文献   

9.
AIMS: The identification of a bacteriocin-producing lactococcal strain isolated from raw cow's milk is reported, along with production conditions, physical and chemical properties, and mode of action of the bacteriocin. METHODS and RESULTS: On the basis of resistance to clindamycin, species-specific PCR and amplification of the 16S-23S rDNA spacer region, the strain was identified as Lactococcus garvieae. Its bacteriocin, designated garviecin L1-5, was bactericidal against closely related species and strains of species from different genera, including Listeria monocytogenes and Clostridium spp. Garviecin L1-5 was shown to be proteinaceous by protease inactivation and was unaffected by heat treatments, also at low pH values. When amplifying known lactococcal bacteriocin genes using DNA from strain L1-5 as template, no amplification products were observed on the agarose gel. The molecular weight of garviecin L1-5 was about 2.5 kDa. As far as is known, no bacteriocins have been detected from Lactococcus garvieae. CONCLUSION: The general properties of garviecin L1-5 are characteristic of the low-molecular-weight bactericidal peptide group. SIGNIFICANCE AND IMPACT OF THE STUDY: The survey of micro-organisms for novel antimicrobial substances provided valuable information on their physiology, ecology and practical application.  相似文献   

10.

Aims

To purify and primarily characterize an anti‐Alicyclobacillus bacteriocin produced by Bifidobacterium animalis subsp. animalis CICC 6165, suggested to be named bificin C6165.

Methods and Results

During purification of the bificin C6165, optimal recovery was achieved with ammonium sulfate precipitation followed by two chromatographic steps. Mass spectrometry analyses revealed a distinctive peak corresponding to a molecular mass of 3395·1 Da. This bacteriocin was heat stable, effective after refrigerated storage and freeze–thaw cycles. The primary mode of action of bificin C6165 is most probably due to pore formation, as indicated by the efflux of K+ from metabolically active cells of Alicyclobacillus acidoterrestris. In the presence of 10 mmol l?1 gadolinium, bificin C6165 did not affect cells of Alicyclobacillus acidoterrestris. This suggests that the mode of action of bificin C6165 relies on a net negatively charged cell surface.

Conclusions

Bificin C6165 is indeed a novel bacteriocin and it exhibited remarkable potency for Alicyclobacillus control.

Significance and Impact of the Study

Application of bacteriocins in preservation of fruit juices has seldom been studied. Bificin C6165 may be an alternative method to control juice spoilage by this Alicyclobacillus acidoterrestris and meet increasing consumer demand for nature and artificial chemical additive‐free food products.  相似文献   

11.
Summary Carnobacterium piscicola CP5 produced a bacteriocin named carnocin CP5 that inhibited Carnobacterium, Enterococcus and Listeria spp. and among the Lactobacillus spp. only Lactobacillus delbrueckii ssp. Carnocin CP5 was stable 1h at 100°C at pH 7.0. It was inactivated by numerous proteolytic enzymes. Production of carnocin, CP5 occured in MRS broth regulated at pH 7.0. The apparent molecular weight of the bacteriocin in the crude extract was greater than 10 kDa, but around 5 kDa after action of SDS or urea. Novobiocin treatment led to non-producer variants.  相似文献   

12.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

13.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

14.
The mechanism of bactericidal activity of lactostrepcin 5 (Las 5), a bacteriocin produced by Streptococcus cremoris 202, was investigated. Las 5 did not kill protoplasts of sensitive cells, and its activity was decreased about 10-fold after pretreatment of the cells with trypsin, suggesting the involvement of the cell wall in the activity of this bacteriocin. In susceptible cells, the bacteriocin slowed down and then stopped synthesis of DNA, RNA, and protein, although this did not appear to be the primary effect of Las 5 action. Las 5 also inhibited uridine transport in susceptible cells and induced leakage of K+ ions and ATP. Survival of cells treated with Las 5 in phosphate buffer was higher in the presence of K+, CA2+, or Mg2+ ions.  相似文献   

15.
ACA-DC 0040 produced an antimicrobial agent, which was named thermophilin T, active against several lactic acid bacteria strains of different species and food spoilage bacteria, such as Clostridium sporogenes C22/10 and Cl. tyrobutyricum NCDO-1754. The crude antimicrobial compound is sensitive to proteolytic enzymes and α-amylase, heat-stable (100 °C for 30 min), resistant to pH exposure at pH 1–12 and demonstrates a bactericidal mode of action against the sensitive strain Lactococcus cremoris CNRZ-117. The production of bacteriocin was optimized approximately 10-fold in an aerobic fermenter held at constant pH 5·8 and 6·2. Ultrafiltration experiments with culture supernatant fluids containing the bacteriocin, and further estimation of molecular weight with gel filtration chromatography, revealed that bacteriocin in the native form has a molecular weight in excess of 300 kDa. SDS-gel electrophoresis of partially purified thermophilin T showed that bacteriocin activity was associated with a protein band of approximately 2·5 kDa molecular mass.  相似文献   

16.
H. DABA, C. LACROIX, J. HUANG, R.E. SIMARD AND L. LEMIEUX. 1994. A bacteriocin produced by a strain of Pediococcus acidilactici was successfully purified sequentially by acid extraction (at pH 2) and reverse-phase high-performance liquid chromatography (HPLC). Cell extracts of derivative strains deficient in bacteriocin production exhibited a similar HPLC elution profile to the active extracts except for the two peaks containing bacteriocin activity. The sequence of the antibacterial peptide consisted of 44 amino acid residues of which 42 were identified, and its molecular weight was 4624 Da, as determined by mass spectrometry. Moreover, according to the molecular weight of the peptide, the unidentified residues in the bacteriocin sequence must correspond to two tryptophan residues, confirming that the peptide isolated from Ped. acidilactici UL5 is pediocin PA-1. However, oxidized forms of the bacteriocin produced during storage also showed bacteriocin activity and resulted in a second peak with activity in the chromatograms. HPLC chromatograms of cell surface preparations from the active and from the deficient strains were confirmed by capillary electrophoresis. The purification method used is simple and effective in comparison with traditional methods, permitting a selective recovery of cell-associated bacteriocin at low pH, and its isolation in pure form for sequencing.  相似文献   

17.
The mechanism of bactericidal activity of lactostrepcin 5 (Las 5), a bacteriocin produced by Streptococcus cremoris 202, was investigated. Las 5 did not kill protoplasts of sensitive cells, and its activity was decreased about 10-fold after pretreatment of the cells with trypsin, suggesting the involvement of the cell wall in the activity of this bacteriocin. In susceptible cells, the bacteriocin slowed down and then stopped synthesis of DNA, RNA, and protein, although this did not appear to be the primary effect of Las 5 action. Las 5 also inhibited uridine transport in susceptible cells and induced leakage of K+ ions and ATP. Survival of cells treated with Las 5 in phosphate buffer was higher in the presence of K+, CA2+, or Mg2+ ions.  相似文献   

18.
Aims: Enhancing production and characterization of a low‐molecular‐weight bacteriocin from Bacillus licheniformis MKU3. Methods and Results: The culture supernatant of B. licheniformis MKU3 exhibited bacteriocin‐like activity against Gram‐positive and ‐negative bacteria and different fungi and yeast. SDS–PAGE analysis of the extracellular proteins of B. licheniformis MKU3 revealed a bacteriocin‐like protein with a molecular mass of 1·5 kDa. This bacteriocin activity was found to be stable under a pH range of 3·0–10·0 and at temperatures up to 100°C for 60 min, but inactivated by proteinase K, trypsin or pronase E. An experimental fractional factorial design for optimization of production medium resulted in a maximum activity of bacteriocin (11 000 AU ml?1) by B. licheniformis MKU3. Conclusions: A low‐molecular‐weight bacteriocin‐like protein from B. licheniformis MKU3 exhibited a wide spectrum of antimicrobial activity against several Grampositive bacteria, several fungi and yeast. A 3·6‐fold increase in the production of bacteriocin was achieved using the culture medium optimized through a fractional factorial design. Significance and Impact of the Study: A bacteriocin with wide spectrum of activity against Gram‐positive bacterial pathogens, filamentous fungi and yeast suggested its potential clinical use. Statistical method facilitated optimization of cultural medium for the improved production of bacteriocin.  相似文献   

19.
AIMS: To characterize a minimal bacteriocin operon of Prevotella nigrescens ATCC 25261. METHODS AND RESULTS: A genomic DNA library of Pr. nigrescens ATCC 25261 was constructed and screened for bacteriocin production by an agar overlay assay. Sequence analysis of the bacteriocin-producing recombinant plasmid, pGP2, has shown that the insert DNA consists of 4868 base pairs, termed nig locus. There is a cluster of four genes within the nig locus, respectively designated nigA, B, C and D. Deleting 160 nucleotides at the 3'-end of nigAB resulted in loss of bacteriocin production, indicating that nigAB may belong to a bacteriocin operon. nigA is thought to be the bacteriocin gene, while nigB may encode an immunity protein. Escherichia coli containing pGP2 expressed the bacteriocin, which is similar in size, antimicrobial activity, and biochemical properties to that purified from Pr. nigrescens ATCC 25261. CONCLUSION: nig Locus is a chromosomal fragment of Pr. nigrescens ATCC 25261, consisting of 4868 base pairs, and has been proved to be important for bacteriocin production. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of the successful cloning and expression of the bacteriocin from Pr. nigrescens ATCC 25261 into E. coli. This will facilitate the construction of bacteriocin analogues and permit investigation of their structure/function relationships.  相似文献   

20.
A novel antimicrobial protein, designated enterolysin A, was purified from an Enterococcus faecalis LMG 2333 culture. Enterolysin A inhibits growth of selected enterococci, pediococci, lactococci, and lactobacilli. Antimicrobial activity was initially detected only on solid media, but by growing the bacteria in a fermentor under optimized production conditions (MRS broth with 4% [wt/vol] glucose, pH 6.5, and a temperature between 25 and 35 degrees C), the bacteriocin activity was increased to 5,120 bacteriocin units ml(-1). Enterolysin A production was regulated by pH, and activity was first detected in the transition between the logarithmic and stationary growth phases. Killing of sensitive bacteria by enterolysin A showed a dose-response behavior, and the bacteriocin has a bacteriolytic mode of action. Enterolysin A was purified, and the primary structure was determined by combined amino acid and DNA sequencing. This bacteriocin is translated as a 343-amino-acid preprotein with an sec-dependent signal peptide of 27 amino acids, which is followed by a sequence corresponding to the N-terminal part of the purified protein. Mature enterolysin A consists of 316 amino acids and has a calculated molecular weight of 34,501, and the theoretical pI is 9.24. The N terminus of enterolysin A is homologous to the catalytic domains of different cell wall-degrading proteins with modular structures. These include lysostaphin, ALE-1, zoocin A, and LytM, which are all endopeptidases belonging to the M37 protease family. The N-terminal part of enterolysin A is linked by a threonine-proline-rich region to a putative C-terminal recognition domain, which shows significant sequence identity to two bacteriophage lysins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号