首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PriB is a primosomal protein required for re-initiation of replication in bacteria. We characterized and compared the DNA-binding properties of PriB from Salmonella enterica serovar Typhimurium LT2 (StPriB) and Escherichia coli (EcPriB). Only one residue of EcPriB, V6, was different in StPriB (replaced by A6). Previous structural information revealed that this residue is located on the putative dimer-dimer interface of PriB and is not involved in single-stranded DNA (ssDNA) binding. The cooperative binding mechanism of StPriB to DNA is, however, very different from that of EcPriB. Unlike EcPriB, which forms a single complex with ssDNAs of various lengths, StPriB forms two or more distinct complexes. Based on these results, as well as information on structure, binding modes for forming a stable complex of PriB with ssDNA of 25 nucleotides (nt), (EcPriB)25, and (StPriB)25 are proposed.  相似文献   

2.
When the replisome collapses at a DNA damage site, a sequence-independent replication restart system is required. In Escherichia coli, PriA, PriB, and DnaT assemble in an orderly fashion at the stalled replication fork and achieve the reloading of the replisome. PriB-DnaT interaction is considered a significant step in the replication restart. In this study, we examined the contribution of the residues Ser20, His26 and Ser55, which are located on the PriB dimer interface. These residues are proximal to Glu39 and Arg44, which are important for PriB-DnaT interaction. Mutational analyses revealed that His26 and Ser20 of PriB are important for the interaction with DnaT, and that the Ser55 residue of PriB might have a role in negatively regulating the DnaT binding. These residues are involved in not only the interaction between PriB and DnaT but also the dissociation of single-stranded DNA (ssDNA) from the PriB−ssDNA complex due to DnaT binding. Moreover, NMR study indicates that the region Asp66−Glu76 on the linker between DnaT domains is involved in the interaction with wild-type PriB. These findings provide significant information about the molecular mechanism underlying replication restart in bacteria.  相似文献   

3.
PriB is a primosomal protein required for the reinitiation of replication in bacteria. Here, we report the identification and characterization of a novel PriB protein in Klebsiella pneumoniae (KPN_04595; KpPriB). Unlike the well-studied Escherichia coli PriB protein (EcPriB), which exists as a homodimer comprising 104-aa polypeptides, KpPriB forms a monomer of only 55 aa, due to the absence of the 49 aa N-terminus in KpPriB. Although this N-terminal region (1–49 aa) in EcPriB contains several important residues, such as K18, R34, and W47, which are crucial for ssDNA binding, we found that KpPriB binds ssDNA, but not ssRNA, with comparable affinity as that for EcPriB. Results from filter-binding assays demonstrate that the KpPriB–ssDNA interaction is cooperative and salt-sensitive. Substituting the residue K33 in KpPriB with alanine, the position corresponding to the classic ssDNA-binding residue K82 of EcPriB located in loop L45, significantly reduced ssDNA-binding activity and cooperativity. These results reveal that the 1–49 aa region of the classical PriB protein is unnecessary for ssDNA binding. On the basis of these findings, the structure–function relationships of KpPriB are discussed.  相似文献   

4.
PriB is a basic 10-kDa protein that acts as a facilitator in PriA-dependent replication restart in Escherichia coli. PriB has an OB-fold dimer structure and exhibits single-stranded DNA (ssDNA)-binding activities similar to single-stranded binding protein (SSB). In this study, we examined PriB's interaction with ssDNA (oligo-dT35, -dT15, and -dT7) using heteronuclear NMR analysis. Interestingly, 1H or 15N chemical shift changes of the PriB main-chain showed two distinct modes using oligo-dT35. The chemical shift perturbation sites in the primary mode were consistent with the main contact site in PriB–ssDNA, which was previously determined by crystal structure analysis. The results also suggested that approximately 8 nt in ssDNA was the main contact site to PriB. In the secondary mode, residues in the α-helix region (His57–Ser65) and in β4–loop3–β5 were mainly perturbed. On the other hand, we examined the state of ssDNA by FRET using 5′-Cy3- and 3′-Cy5-modified oligo-dT35. As the PriB concentration increased, two-step saturation curves were observed in the FRET assay, suggesting a compact structure of ssDNA. Moreover, we confirmed two-step PriB binding to oligo-dT35 using EMSA. The pH dependence of FRET suggested contribution of the His residues. Therefore, we prepared His mutants of PriB and found that His64 in the α-helix region contributed to the second interaction between PriB and ssDNA using FRET and EMSA. Thus, from a structural standpoint, we suggested the role of His64 on the compactness of the PriB–ssDNA complex and on the positive cooperativity of PriB.  相似文献   

5.
PriB is a primosomal protein required for replication restart in Escherichia coli. PriB stimulates PriA helicase activity via interaction with single-stranded DNA (ssDNA), but the molecular details of this interaction remain unclear. Here, we report the crystal structure of PriB complexed with a 15 bases oligonucleotide (dT15) at 2.7 Å resolution. PriB shares structural similarity with the E.coli ssDNA-binding protein (EcoSSB). However, the structure of the PriB–dT15 complex reveals that PriB binds ssDNA differently. Results from filter-binding assays show that PriB–ssDNA interaction is salt-sensitive and cooperative. Mutational analysis suggests that the loop L45 plays an important role in ssDNA binding. Based on the crystal structure and biochemical analyses, we propose a cooperative mechanism for the binding of PriB to ssDNA and a model for the assembly of the PriA–PriB–ssDNA complex. This report presents the first structure of a replication restart primosomal protein complexed with DNA, and a novel model that explains the interactions between a dimeric oligonucleotide-binding-fold protein and ssDNA.  相似文献   

6.
Quantitative analysis of the interactions of the Escherichia coli primosomal PriB protein with a single-stranded DNA was done using quantitative fluorescence titration, photocrosslinking, and analytical ultracentrifugation techniques. Stoichiometry studies were done with a series of etheno-derivatives of single-stranded (ss) DNA oligomers. Interactions with the unmodified nucleic acids were studied, using the macromolecular competition titration (MCT) method. The total site-size of the PriB dimer-ssDNA complex, i.e. the maximum number of nucleotides occluded by the PriB dimer in the complex, is 12 ± 1 nt. The protein has a single DNA-binding site, which is located centrally within the dimer and has a functionally homogeneous structure. The stoichiometry and photocrosslinking data show that only a single monomer of the PriB dimer engages in interactions with the nucleic acid. The analysis of the PriB binding to long oligomers was done using a statistical thermodynamic model that takes into account the overlap of potential binding sites and cooperative interactions. The PriB dimer binds the ssDNA with strong positive cooperativity. Both the intrinsic affinity and cooperative interactions are accompanied by a net ion release, with anions participating in the ion exchange process. The intrinsic binding process is an entropy-driven reaction, suggesting strongly that the DNA association induces a large conformational change in the protein. The PriB protein shows a dramatically strong preference for the homo-pyrimidine oligomers with an intrinsic affinity higher by about three orders of magnitude, as compared to the homo-purine oligomers. The significance of these results for PriB protein activity is discussed.  相似文献   

7.
PriB is one of the Escherichia coli varphiX-type primosome proteins that are required for assembly of the primosome, a mobile multi-enzyme complex responsible for the initiation of DNA replication. Here we report the crystal structure of the E. coli PriB at 2.1 A resolution by multi-wavelength anomalous diffraction using a mercury derivative. The polypeptide chain of PriB is structurally similar to that of single-stranded DNA-binding protein (SSB). However, the biological unit of PriB is a dimer, not a homotetramer like SSB. Electrophoretic mobility shift assays demonstrated that PriB binds single-stranded DNA and single-stranded RNA with comparable affinity. We also show that PriB binds single-stranded DNA with certain base preferences. Based on the PriB structural information and biochemical studies, we propose that the potential tetramer formation surface and several other regions of PriB may participate in protein-protein interaction during DNA replication. These findings may illuminate the role of PriB in varphiX-type primosome assembly.  相似文献   

8.
HU binds and folds single-stranded DNA   总被引:1,自引:1,他引:0  
The nucleoid-associated protein HU plays an important role in bacterial nucleoid organization and is involved in numerous processes including transposition, recombination and DNA repair. We show here that HU binds specifically DNA containing mismatched region longer than 3 bp as well as DNA bulges. HU binds single-stranded DNA (ssDNA) in a binding mode that is reminiscent but different from earlier reported specific HU interactions with double-helical DNA lesions. An HU dimer requires 24 nt of ssDNA for initial binding, and 12 nt of ssDNA for each additional dimer binding. In the presence of equimolar amounts of HU dimer and DNA, the ssDNA molecule forms an U-loop (hairpin-like) around the protein, providing contacts with both sides of the HU body. This mode differs from the binding of the single-strand-binding protein (SSB) to ssDNA: in sharp contrast to SSB, HU binds ssDNA non-cooperatively and does not destabilize double-helical DNA. Furthermore HU has a strong preference for poly(dG), while binding to poly(dA) is the weakest. HU binding to ssDNA is probably important for its capacity to cover and protect bacterial DNA both intact and carrying lesions.  相似文献   

9.
Biswas SB  Biswas-Fiss EE 《Biochemistry》2006,45(38):11505-11513
DnaB helicase is responsible for unwinding duplex DNA during chromosomal DNA replication and is an essential component of the DNA replication apparatus in Escherichia coli. We have analyzed the mechanism of binding of single-stranded DNA (ssDNA) by the DnaB x DnaC complex and DnaB helicase. Binding of ssDNA to DnaB helicase was significantly modulated by nucleotide cofactors, and the modulation was distinctly different for its complex with DnaC. DnaB helicase bound ssDNA with a high affinity [Kd = (5.09 +/- 0.32) x 10(-8) M] only in the presence of ATPgammaS, a nonhydrolyzable analogue of ATP, but not other nucleotides. The binding was sensitive to ionic strength but not to changes in temperature in the range of 30-37 degrees C. On the other hand, ssDNA binding in the presence of ADP was weaker than that observed with ATPgammaS, and the binding was insensitive to ionic strength. DnaC protein hexamerizes to form a 1:1 complex with the DnaB hexamer and loads it onto the ssDNA by forming a DnaB6 x DnaC6 dodecameric complex. Our results demonstrate that the DnaB6 x DnaC6 complex bound ssDNA with a high affinity [Kd = (6.26 +/- 0.65) x 10(-8) M] in the presence of ATP, unlike the DnaB hexamer. In the presence of ATPgammaS or ADP, binding of ssDNA by the DnaB6 x DnaC6 complex was a lower-affinity process. In summary, our results suggest that in the presence of ATP in vivo, the DnaB6 x DnaC6 complex should be more efficient in binding DNA as well as in loading DnaB onto the ssDNA than DnaB helicase itself.  相似文献   

10.
Adenosine nucleotides affect the ability of RecA small middle dotsingle-stranded DNA (ssDNA) nucleoprotein filaments to cooperatively assume and maintain an extended structure that facilitates DNA pairing during recombination. Here we have determined that ADP and ATP/ATPgammaS affect the DNA binding and aggregation properties of the human RecA homolog human RAD51 protein (hRAD51). These studies have revealed significant differences between hRAD51 and RecA. In the presence of ATPgammaS, RecA forms a stable complex with ssDNA, while the hRAD51 ssDNA complex is destabilized. Conversely, in the presence of ADP and ATP, the RecA ssDNA complex is unstable, while the hRAD51 ssDNA complex is stabilized. We identified two hRAD51 small middle dotssDNA binding forms by gel shift analysis, which were distinct from a well defined RecA small middle dotssDNA binding form. The available evidence suggests that a low molecular weight hRAD51 small middle dotssDNA binding form (hRAD51 small middle dotssDNA(low)) correlates with active ADP and ATP processing. A high molecular weight hRAD51 small middle dotssDNA aggregate (hRAD51 small middle dotssDNA(high)) appears to correlate with a form that fails to process ADP and ATP. Our data are consistent with the notion that hRAD51 is unable to appropriately coordinate ssDNA binding with adenosine nucleotide processing. These observations suggest that other factors may assist hRAD51 in order to mirror RecA recombinational function.  相似文献   

11.
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin or stabilizes an unwound state. We analyzed the contribution of pTP to pTP/pol origin binding using various DNA oligonucleotides. We show that two pTP molecules bind cooperatively to short DNA duplexes, while longer DNA fragments are bound by single pTP molecules as well. Cooperative binding to short duplexes is DNA sequence independent and most likely mediated by protein/protein contacts. Furthermore, we observed that pTP binds single-stranded (ss)DNA with a minimal length of approximately 35 nt and that random ssDNA competed 25-fold more efficiently than random duplex DNA for origin binding by pTP. Remarkably, short DNA fragments with two opposing single strands supported monomeric pTP binding. pTP did not stimulate, but inhibited strand displacement by the Ad DNA binding and unwinding protein DBP. These observations suggest a mechanism in which the ssDNA affinity of pTP stabilizes Ad pol on partially unwound origin DNA.  相似文献   

12.
PriB is not only an essential protein necessary for the replication restart on the collapsed and disintegrated replication fork, but also an important protein for assembling of primosome onto PhiX174 genomic DNA during replication initiation. Here we report a 2.0-A-resolution X-ray structure of a biologically functional form of PriB from Escherichia coli. The crystal structure revealed that despite a low level of primary sequence identity, the PriB monomer, as well as the dimeric form, are structurally identical to the N-terminal DNA-binding domain of the single-stranded DNA-binding protein (SSB) from Escherichia coli, which possesses an oligonucleotides-binding-fold. The oligonucleotide-PriB complex model based on the oligonucleotides-SSB complex structure suggested that PriB had a DNA-binding pocket conserved in SSB from Escherichia coli and might bind to single-stranded DNA in the manner of SSB. Furthermore, surface plasmon resonance analysis and fluorescence measurements demonstrated that PriB binds single-stranded DNA with high affinity, by involving tryptophan residue. The significance of these results with respect to the functional role of PriB in the assembly of primosome is discussed.  相似文献   

13.
Bobeck MJ  Rueda D  Walter NG  Glick GD 《Biochemistry》2007,46(23):6753-6765
11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy transfer were implemented here as restraints to model docking between 11F8 and the sequence-specific ssDNA. The model of the complex suggests that aromatic stacking and two sets of bidentate hydrogen bonds between binding site arginine residues (R31VH and R96VH) and loop nucleotides provide the molecular basis for high affinity and specificity. In part, 11F8 utilizes the same ssDNA binding motif of Y32VL, H91VL, and an aromatic residue in the third complementarity-determining region to recognize thymine-rich sequences as do two anti-ssDNA autoantibodies crystallized in complex with thymine. R31SVH is a dominant somatic mutation found in the J558 germline sequence that is implicated in 11F8 sequence specificity. A model of the mutant R31S11F8.ssDNA complex suggests that different interface contacts occur when serine replaces arginine 31 at the binding site. The modeled contacts between the R31S11F8 mutant and thymine are closely related to those observed in other anti-ssDNA binding antibodies, while we find additional contacts between 11F8 and ssDNA that involve amino acids not utilized by the other antibodies. These data-driven 11F8.ssDNA models provide testable hypotheses concerning interactions that mediate sequence specificity in 11F8 and the effects of somatic mutation on ssDNA recognition.  相似文献   

14.
A binding protein for single-stranded DNA (ssDNA) was purified from calf thymus to near homogeneity by chromatography on DEAE-cellulose, blue-Sepharose, ssDNA-cellulose and FPLC Mono Q. The most purified fraction consisted of four polypeptides with molecular masses of 70, 55, 30, and 11 kDa. The polypeptide with the molecular mass of 55 kDa is most likely a degraded form of the largest polypeptide. The complex migrated as a whole on both glycerol gradient ultracentrifugation (s = 5.1 S) and gel filtration (Stokes' radius approximately 5.1 nm). Combining these data indicates a native molecular mass of about 110 kDa, which is in accord with a 1:1:1 stoichiometry for the 70 + 55/30/11-kDa complex. The ssDNA binding protein (SSB) covered approximately 20-25 nucleotides on M13mp8 ssDNA, as revealed from both band shift experiments and DNase I digestion studies. The homologous DNA-polymerase-alpha-primase complex was stimulated by the ssDNA binding protein 1.2-fold on poly(dA).(dT)14 and 10-13-fold on singly primed M13mp8 DNA. Stimulation was mainly due to facilitated DNA synthesis through stable secondary structures, as demonstrated by the vanishing of many, but not all, pausing sites. Processivity of polymerase-primase was not affected on poly(dA).(dT)14; with poly(dT).(rA)10 an approximately twofold increase in product lengths was observed when SSB was present. The increase was attributed to a facilitated rebinding of polymerase alpha to an already finished DNA fragment rather than to an enhancement of the intrinsic processivity of the polymerase. Similarly, products 300-600 nucleotides long were formed on singly primed M13 DNA in the presence of SSB, in contrast to 20-120 nucleotides when SSB was absent. DNA-primase-initiated DNA replication on M13 DNA was inhibited by SSB in a concentration-dependent manner. However, with less sites available to begin with RNA priming, more homogeneous products were formed.  相似文献   

15.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

16.
Kozlov AG  Lohman TM 《Biochemistry》2002,41(39):11611-11627
The kinetic mechanism of transfer of the homotetrameric Escherichia coli SSB protein between ssDNA molecules was studied using stopped-flow experiments. Dissociation of SSB from the donor ssDNA was monitored after addition of a large excess of unlabeled acceptor ssDNA by using either SSB tryptophan fluorescence or the fluorescence of a ssDNA labeled with an extrinsic fluorophore [fluorescein (F) or Cy3]. The dominant pathway for SSB dissociation occurs by a "direct transfer" mechanism in which an intermediate composed of two DNA molecules bound to one SSB tetramer forms transiently prior to the release of the acceptor DNA. When an initial 1:1 SSB-ssDNA complex is formed with (dT)(70) in the fully wrapped (SSB)(65) mode so that all four SSB subunits are bound to (dT)(70), the formation of the ternary intermediate complex occurs slowly with an apparent bimolecular rate constant, k(2,app), ranging from 1.2 x 10(3) M(-1) s(-1) (0.2 M NaCl) to approximately 5.1 x 10(3) M(-1) s(-1) (0.4 M NaBr), and this rate limits the overall rate of the transfer reaction (pH 8.1, 25 degrees C). These rate constants are approximately 7 x 10(5)- and approximately 7 x 10(4)-fold lower, respectively, than those measured for binding of the same ssDNA to an unligated SSB tetramer to form a singly ligated complex. However, when an initial SSB-ssDNA complex is formed with (dT)(35) so that only two SSB subunits interact with the DNA in an (SSB)(35) complex, the formation of the ternary intermediate occurs much faster with a k(2,app) ranging from >6.3 x 10(7) M(-1) s(-1) (0.2 M NaCl) to 2.6 x 10(7) M(-1) s(-1) (0.4 M NaBr). For these experiments, the rate of dissociation of the donor ssDNA determines the overall rate of the transfer reaction. Hence, an SSB tetramer can be transferred from one ssDNA molecule to another without proceeding through a free protein intermediate, and the rate of transfer is determined by the availability of free DNA binding sites within the initial SSB-ssDNA donor complex. Such a mechanism may be used to recycle SSB tetramers between old and newly formed ssDNA regions during lagging strand DNA replication.  相似文献   

17.
The frequency with which replication forks break down in all organisms requires that specific mechanisms ensure completion of genome duplication. In Escherichia coli a major pathway for reloading of the replicative apparatus at sites of fork breakdown is dependent on PriA helicase. PriA acts in conjunction with PriB and DnaT to effect loading of the replicative helicase DnaB back onto the lagging strand template, either at stalled fork structures or at recombination intermediates. Here we showed that PriB stimulates PriA helicase, acting to increase the apparent processivity of PriA. This stimulation correlates with the ability of PriB to form a ternary complex with PriA and DNA structures containing single-stranded DNA, suggesting that the known single-stranded DNA binding function of PriB facilitates unwinding by PriA helicase. This enhanced apparent processivity of PriA might play an important role in generating single-stranded DNA at stalled replication forks upon which to load DnaB. However, stimulation of PriA by PriB is not DNA structure-specific, demonstrating that targeting of stalled forks and recombination intermediates during replication restart likely resides with PriA alone.  相似文献   

18.
19.
RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.  相似文献   

20.
The DNA binding and structural properties of Xfin-31 (Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. and Wright, P.E., 1989, Science 245, 635-637), a twenty five amino acid zinc finger peptide, in the reduced, oxidized and zinc complex forms, as well as the fourteen residue helical segment of the zinc finger (residues 12-25) have been compared using affinity coelectrophoresis (ACE) and circular dichroism (CD) spectroscopy. The zinc complex and oxidized peptides bind cooperatively to DNA although the cooperativity factor, omega, is more than 15-fold greater for the zinc complex. The reduced peptide in the absence of zinc and the helical segment do not bind cooperatively (omega = 1). Hence, the binding constant for singly contiguous sites (K omega) ranges over 100-fold for the various peptides even though the intrinsic binding constants (K) are similar. An increase in binding order and affinity for the other forms of Xfin-31 is correlated with an increasing similarity of the CD spectrum to that of the Xfin-31 zinc complex. The surprising DNA binding activity of the oxidized peptide may result from hydrophobic interactions between the amino-terminal loop formed by the Cys3-Cys6 disulfide bond and conserved hydrophobic residues in the carboxyl-terminal segment. Xfin-31 may be a particularly useful model for studying several poorly understood aspects of cooperative, non-specific DNA binding since it is small, has a stable, well-defined structure, and structures of zinc fingers bound to DNA have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号