首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Proximal-to-distal growth of the embryonic limbs requires Fgf10 in the mesenchyme to activate Fgf8 in the apical ectodermal ridge (AER), which in turn promotes mesenchymal outgrowth. We show here that the growth arrest specific gene 1 (Gas1) is required in the mesenchyme for the normal regulation of Fgf10/Fgf8. Gas1 mutant limbs have defects in the proliferation of the AER and the mesenchyme and develop with small autopods, missing phalanges and anterior digit syndactyly. At the molecular level, Fgf10 expression at the distal tip mesenchyme immediately underneath the AER is preferentially affected in the mutant limb, coinciding with the loss of Fgf8 expression in the AER. To test whether FGF10 deficiency is an underlying cause of the Gas1 mutant phenotype, we employed a limb culture system in conjunction with microinjection of recombinant proteins. In this system, FGF10 but not FGF8 protein injected into the mutant distal tip mesenchyme restores Fgf8 expression in the AER. Our data provide evidence that Gas1 acts to maintain high levels of FGF10 at the tip mesenchyme and support the proposal that Fgf10 expression in this region is crucial for maintaining Fgf8 expression in the AER.  相似文献   

5.
Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell–cell communication and polarizing signaling are intimately connected.  相似文献   

6.
Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in the zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.  相似文献   

7.
Choi KS  Lee C  Maatouk DM  Harfe BD 《PloS one》2012,7(5):e37826
Outgrowth and patterning of the vertebrate limb requires a functional apical ectodermal ridge (AER). The AER is a thickening of ectodermal tissue located at the distal end of the limb bud. Loss of this structure, either through genetic or physical manipulations results in truncation of the limb. A number of genes, including Bmps, are expressed in the AER. Previously, it was shown that removal of the BMP receptor Bmpr1a specifically from the AER resulted in complete loss of hindlimbs suggesting that Bmp signaling in the AER is required for limb outgrowth. In this report, we genetically removed the three known AER-expressed Bmp ligands, Bmp2, Bmp4 and Bmp7 from the AER of the limb bud using floxed conditional alleles and the Msx2-cre allele. Surprisingly, only defects in digit patterning and not limb outgrowth were observed. In triple mutants, the anterior and posterior AER was present but loss of the central region of the AER was observed. These data suggest that Bmp ligands expressed in the AER are not required for limb outgrowth but instead play an essential role in maintaining the AER and patterning vertebrate digits.  相似文献   

8.
The limb muscles, originating from the ventrolateral portion of the somites, exhibit position-specific morphological development through successive splitting and growth/differentiation of the muscle masses in a region-specific manner by interacting with the limb mesenchyme and the cartilage elements. The molecular mechanisms that provide positional cues to the muscle precursors are still unknown. We have shown that the expression patterns of Hoxa-11 and Hoxa-13 are correlated with muscle patterning of the limb bud (Yamamoto et al., 1998) and demonstrated that muscular Hox genes are activated by signals from the limb mesenchyme. We dissected the regulatory mechanisms directing the unique expression patterns of Hoxa-11 and Hoxa-13 during limb muscle development. HOXA-11 protein was detected in both the myogenic cells and the zeugopodal mesenchymal cells of the limb bud. The earlier expression of HOXA-11 in both the myogenic precursor cells and the mesenchyme was dependent on the apical ectodermal ridge (AER), but later expression was independent of the AER. HOXA-11 expression in both myogenic precursor cells and mesenchyme was induced by fibroblast growth factor (FGF) signal, whereas hepatocyte growth factor/scatter factor (HGF/SF) maintained HOXA-11 expression in the myogenic precursor cells, but not in the mesenchyme. The distribution of HOXA-13 protein expression in the muscle masses was restricted to the posterior region. We found that HOXA-13 expression in the autopodal mesenchyme was dependent on the AER but not on the polarizing region, whereas expression of HOXA-13 in the posterior muscle masses was dependent on the polarizing region but not on the AER. Administration of BMP-2 at the anterior margin of the limb bud induced ectopic HOXA-13 expression in the anterior region of the muscle masses followed by ectopic muscle formation close to the source of exogenous BMP-2. In addition, NOGGIN/CHORDIN, antagonists of BMP-2 and BMP-4, downregulated the expression of HOXA-13 in the posterior region of the muscle masses and inhibited posterior muscle development. These results suggested that HOXA-13 expression in the posterior muscle masses is activated by the posteriorizing signal from the posterior mesenchyme via BMP-2. On the contrary, the expression of HOXA-13 in the autopodal mesenchyme was affected by neither BMP-2 nor NOGGIN/CHORDIN. Thus, mesenchymal HOXA-13 expression was independent of BMP-2 from polarizing region, but was under the control of as yet unidentified signals from the AER. These results showed that expression of Hox genes is regulated differently in the limb muscle precursor and mesenchymal cells.  相似文献   

9.
Fibroblast growth factors (FGFs) mediate multiple developmental signals in vertebrates. Several of these factors are expressed in limb bud structures that direct patterning of the limb. FGF4 is produced in the apical ectodermal ridge (AER) where it is hypothesized to provide mitogenic and morphogenic signals to the underlying mesenchyme that regulate normal limb development. Mutation of this gene in the germline of mice results in early embryonic lethality, preventing subsequent evaluation of Fgf4 function in the AER. A conditional mutant of Fgf4, based on site-specific Cre/loxP-mediated excision of the gene, allowed us to bypass embryonic lethality and directly test the role of FGF4 during limb development in living murine embryos. This conditional mutation was designed so that concomitant with inactivation of the Fgf4 gene by excision of all Fgf4-coding sequences, a reporter gene was activated in Fgf4-expressing cells, allowing assessment of the site-specific recombination reaction. Although a large body of evidence led us to predict that ablation of Fgf4 gene function in the AER of developing mice would result in abnormal limb outgrowth and patterning, we found that Fgf4 conditional mutants had normal limbs. Furthermore, expression patterns of Shh, Bmp2, Fgf8 and Fgf10 were normal in the limb buds of the conditional mutants. These findings indicate that the previously proposed FGF4-SHH feedback loop is not essential for coordination of murine limb outgrowth and patterning. We suggest that some of the roles currently attributed to FGF4 during early vertebrate limb development may be performed by other AER factors in vivo.  相似文献   

10.
During vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors.  相似文献   

11.
The apical ectodermal ridge (AER) is a transient embryonic structure essential for the induction, patterning and outgrowth of the vertebrate limb. However, the mechanism of AER function in limb skeletal patterning has remained unclear. In this study, we genetically ablated the AER by conditionally removing FGFR2 function and found that distal limb development failed in mutant mice. We showed that FGFR2 promotes survival of AER cells and interacts with Wnt/beta-catenin signaling during AER maintenance. Interestingly, cell proliferation and survival were not significantly reduced in the distal mesenchyme of mutant limb buds. We established Hoxa13 expression as an early marker of distal limb progenitors and discovered a dynamic morphogenetic process of distal limb development. We found that premature AER loss in mutant limb buds delayed generation of autopod progenitors, which in turn failed to reach a threshold number required to form a normal autopod. Taken together, we have uncovered a novel mechanism, whereby the AER regulates the number of autopod progenitors by determining the onset of their generation.  相似文献   

12.
Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.  相似文献   

13.
14.
During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43.  相似文献   

15.
The secreted protein encoded by the Sonic hedgehog (Shh) gene is localized to the posterior margin of vertebrate limb buds and is thought to be a key signal in establishing anterior-posterior limb polarity. In the Shh(-/-) mutant mouse, the development of many embryonic structures, including the limb, is severely compromised. In this study, we report the analysis of Shh(-/-) mutant limbs in detail. Each mutant embryo has four limbs with recognizable humerus/femur bones that have anterior-posterior polarity. Distal to the elbow/knee joints, skeletal elements representing the zeugopod form but lack identifiable anterior-posterior polarity. Therefore, Shh specifically becomes necessary for normal limb development at or just distal to the stylopod/zeugopod junction (elbow/knee joints) during mouse limb development. The forelimb autopod is represented by a single distal cartilage element, while the hindlimb autopod is invariably composed of a single digit with well-formed interphalangeal joints and a dorsal nail bed at the terminal phalanx. Analysis of GDF5 and Hoxd11-13 expression in the hindlimb autopod suggests that the forming digit has a digit-one identity. This finding is corroborated by the formation of only two phalangeal elements which are unique to digit one on the foot. The apical ectodermal ridge (AER) is induced in the Shh(-/-) mutant buds with relatively normal morphology. We report that the architecture of the Shh(-/-) AER is gradually disrupted over developmental time in parallel with a reduction of Fgf8 expression in the ridge. Concomitantly, abnormal cell death in the Shh(-/-) limb bud occurs in the anterior mesenchyme of both fore- and hindlimb. It is notable that the AER changes and mesodermal cell death occur earlier in the Shh(-/-) forelimb than the hindlimb bud. This provides an explanation for the hindlimb-specific competence to form autopodial structures in the mutant. Finally, unlike the wild-type mouse limb bud, the Shh(-/-) mutant posterior limb bud mesoderm does not cause digit duplications when grafted to the anterior border of chick limb buds, and therefore lacks polarizing activity. We propose that a prepattern exists in the limb field for the three axes of the emerging limb bud as well as specific limb skeletal elements. According to this model, the limb bud signaling centers, including the zone of polarizing activity (ZPA) acting through Shh, are required to elaborate upon the axial information provided by the native limb field prepattern.  相似文献   

16.
17.
SF/HGF is a mediator between limb patterning and muscle development.   总被引:3,自引:0,他引:3  
Scatter factor/hepatocyte growth factor (SF/HGF) is known to be involved in the detachment of myogenic precursor cells from the lateral dermomyotomes and their subsequent migration into the newly formed limb buds. As yet, however, nothing has been known about the role of the persistent expression of SF/HGF in the limb bud mesenchyme during later stages of limb bud development. To test for a potential role of SF/HGF in early limb muscle patterning, we examined the regulation of SF/HGF expression in the limb bud as well as the influence of SF/HGF on direction control of myogenic precursor cells in limb bud mesenchyme. We demonstrate that SF/HGF expression is controlled by signals involved in limb bud patterning. In the absence of an apical ectodermal ridge (AER), no expression of SF/HGF in the limb bud is observed. However, FGF-2 application can rescue SF/HGF expression. Excision of the zone of polarizing activity (ZPA) results in ectopic and enhanced SF/HGF expression in the posterior limb bud mesenchyme. We could identify BMP-2 as a potential inhibitor of SF/HGF expression in the posterior limb bud mesenchyme. We further demonstrate that ZPA excision results in a shift of Pax-3-positive cells towards the posterior limb bud mesenchyme, indicating a role of the ZPA in positioning of the premuscle masses. Moreover, we present evidence that, in the limb bud mesenchyme, SF/HGF increases the motility of myogenic precursor cells and has a role in maintaining their undifferentiated state during migration. We present a model for a crucial role of SF/HGF during migration and early patterning of muscle precursor cells in the vertebrate limb.  相似文献   

18.
Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-function beta-catenin alleles, we have studied the role of mesenchymal beta-catenin activity during limb development. Here, we show that loss of beta-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of beta-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of beta-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a beta-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of beta-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in beta-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal beta-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.  相似文献   

19.
The outgrowth of motor axons to the developing pectoral fin of the Japanese medaka fish (Oryzias latipes) was investigated both in wildtype embryos and in the pectoral finless (pl) mutants in which adults are missing pectoral fins. Late in embryogenesis the pectoral fin is a simple limb which contains two antagonist muscles which are innervated by presumptive motor neurons from the first four spinal segments (S1-4). The pectoral fin develops from a fin bud located in S1 and S2 centered on the border between S1 and S2 and, as with other limbs, one of the earliest signs of differentiation is the apical ectodermal ridge (AER). By the time the AER is well formed the growth cones of the presumptive motor neurons have reached the base of the fin bud and formed a plexus by extending toward the fin bud upon emergence from the spinal cord. This is especially evident on the ventral surface of the metamerically arranged axial muscles. For example, growth cones from S2 extend in a diagonal direction (both anterior and lateral) towards the fin bud. One hypothesis which can account for the pattern of motor outgrowth is that growth cones are attracted to the base of the fin bud, perhaps via a long distance cue. This hypothesis was tested by examining outgrowth of segmental nerves in pl embryos in which the fin buds arrest early in development following the initial appearance of the AER. In pl, nerves from S1-4 converged to form a plexus at the base of the abnormal fin bud, but the pattern of outgrowth varied from wildtype in a way consistent with a diminished capacity of the fin bud to attract segmental nerves to it.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号