首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In esophageal mucosa, HCl causes TRPV1-mediated release of calcitonin gene-related peptide (CGRP) and substance P (SP) from submucosal neurons and of platelet-activating factor (PAF) from epithelial cells. CGRP and SP release was unaffected by PAF antagonists but reduced by the purinergic antagonist suramin. ATP caused CGRP and SP release from esophageal mucosa, confirming a role of ATP in the release. The human esophageal epithelial cell line HET-1A was used to identify epithelial cells as the site of ATP release. HCl caused ATP release from HET-1A, which was reduced by the TRPV1 antagonist 5-iodoresiniferatoxin. Real-time PCR demonstrated the presence of mRNA for several P2X and P2Y purinergic receptors in epithelial cells. HCl also increased activity of lyso-PAF acetyl-CoA transferase (lyso-PAF AT), the enzyme responsible for production of PAF. The increase was blocked by suramin. ATP caused a similar increase, confirming ATP as a mediator for the TRPV1-induced increase in enzyme activity. Repeated exposure of HET-1A cells to HCl over 2 days caused upregulation of mRNA and protein expression for lyso-PAF AT. Suramin blocked this response. Repeated exposure to ATP caused a similar mRNA increase, confirming ATP as a mediator for upregulation of the enzyme. Thus, HCl-induced activation of TRPV1 causes ATP release from esophageal epithelial cells that causes release of CGRP and SP from esophageal submucosal neurons and activation of lyso-PAF AT, the enzyme responsible for the production of PAF in epithelial cells. Repeated application of HCl or of ATP causes upregulation of lyso-PAF AT in epithelial cells.  相似文献   

2.
The esophageal epithelium has sensory properties that enable it to sustain normal barrier function. Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that is activated by extracellular hypotonicity, polyunsaturated fatty acids, phorbol esters, and elevated temperature. We found that TRPV4 is expressed in both human esophageal tissue and in HET-1A cells, a human esophageal epithelial cell line. Specific activation of TRPV4 by the phorbol ester 4α-phorbol 12,13-didecanoate (4α-PDD) increased intracellular Ca(2+) in a subset of HET-1A cells. Elevated temperature strongly potentiated this effect at low concentrations of 4α-PDD, and all of the responses were inhibited by the TRPV antagonist ruthenium red. TRPV4 activation differentially affected cell proliferation and cell viability; HET-1A cell proliferation was increased by 1 μM 4α-PDD, whereas higher concentrations (10 μM and 30 μM) significantly decreased cell viability. Transient TRPV4 activation triggered ATP release in a concentration-dependent manner via gap-junction hemichannels, including pannexin 1 and connexin 43. Furthermore, TRPV4 activation for 24 h did not increase the production of interleukin 8 (IL-8) but reduced IL-1β-induced IL-8 production. Small-interference RNA targeted to TRPV4 significantly attenuated all of the 4α-PDD-induced responses in HET-1A cells. Collectively, these findings suggest that TRPV4 is a novel regulator of Ca(2+)-dependent signaling pathways linked to cell proliferation, cell survival, ATP release, and IL-8 production in human esophageal epithelial cells.  相似文献   

3.
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.  相似文献   

4.

Introduction

Airway epithelial cells play a central role in the physiopathology of asthma. They release eotaxins when treated with TH2 cytokines such as interleukin (IL)-4 or IL-13, and these chemokines attract eosinophils and potentiate the biosynthesis of cysteinyl leukotrienes (cysLTs), which in turn induce bronchoconstriction and mucus secretion. These effects of cysLTs mainly mediated by CysLT1 and CysLT2 receptors on epithelial cell functions remain largely undefined. Because the release of inflammatory cytokines, eotaxins, and cysLTs occur relatively at the same time and location in the lung tissue, we hypothesized that they regulate inflammation cooperatively rather than redundantly. We therefore investigated whether cysLTs and the TH2 cytokines would act in concert to augment the release of eotaxins by airway epithelial cells.

Methods

A549 cells or human primary bronchial epithelial cells were incubated with or without IL-4, IL-13, and/or LTD4. The release of eotaxin-3 and the expression of cysLT receptors were assessed by ELISA, RT-PCR, and flow cytometry, respectively.

Results

IL-4 and IL-13 induced the release of eotaxin-3 by airway epithelial cells. LTD4 weakly induced the release of eotaxin-3 but clearly potentiated the IL-13-induced eotaxin-3 release. LTD4 had no effect on IL-4-stimulated cells. Epithelial cells expressed CysLT1 but not CysLT2. CysLT1 expression was increased by IL-13 but not by IL-4 and/or LTD4. Importantly, the upregulation of CysLT1 by IL-13 preceded eotaxin-3 release.

Conclusions

These results demonstrate a stepwise cooperation between IL-13 and LTD4. IL-13 upregulates CysLT1 expression and consequently the response to cysLTs This results in an increased release of eotaxin-3 by epithelial cells which at its turn increases the recruitment of leukocytes and their biosynthesis of cysLTs. This positive amplification loop involving epithelial cells and leukocytes could be implicated in the recruitment of eosinophils observed in asthmatics.  相似文献   

5.

Objective

Besides reducing gastric acid secretion, proton pump inhibitors (PPIs) suppress Th2-cytokine-stimulated expression of an eosinophil chemoattractant (eotaxin-3) by esophageal epithelial cells through acid-independent, anti-inflammatory mechanisms. To explore acid-inhibitory and acid-independent, anti-inflammatory PPI effects in reducing esophageal eosinophilia, we studied eotaxin-3 expression by the proximal and distal esophagus of children with esophageal eosinophilia before and after PPI therapy. In vitro, we studied acid and bile salt effects on IL-13-stimulated eotaxin-3 expression by esophageal epithelial cells.

Design

Among 264 children with esophageal eosinophilia seen at a tertiary pediatric hospital from 2008 through 2012, we identified 10 with esophageal biopsies before and after PPI treatment alone. We correlated epithelial cell eotaxin-3 immunostaining with eosinophil numbers in those biopsies. In vitro, we measured eotaxin-3 protein secretion by esophageal squamous cells stimulated with IL-13 and exposed to acid and/or bile salt media, with or without omeprazole.

Results

There was strong correlation between peak eosinophil numbers and peak eotaxin-3-positive epithelial cell numbers in esophageal biopsies. Eotaxin-3 expression decreased significantly with PPIs only in the proximal esophagus. In esophageal cells, exposure to acid-bile salt medium significantly suppressed IL-13-induced eotaxin-3 secretion; omeprazole added to the acid-bile salt medium further suppressed that eotaxin-3 secretion, but not as profoundly as at pH-neutral conditions.

Conclusion

In children with esophageal eosinophilia, PPIs significantly decrease eotaxin-3 expression in the proximal but not the distal esophagus. In esophageal squamous cells, acid and bile salts decrease Th2 cytokine-stimulated eotaxin-3 secretion profoundly, possibly explaining the disparate PPI effects on the proximal and distal esophagus. In the distal esophagus, where acid reflux is greatest, a PPI-induced reduction in acid reflux (an effect that could increase eotaxin-3 secretion induced by Th2 cytokines) might mask the acid-independent, anti-inflammatory PPI effect of decreasing cytokine-stimulated eotaxin-3 secretion.  相似文献   

6.
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.  相似文献   

7.
8.
Platelet-activating factor (PAF) and interleukin-6 (IL-6) are produced in the esophagus in response to HCl and affect ACh release, causing changes in esophageal motor function similar to esophagitis (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G418-G428, 2005). We therefore examined HCl-activated mechanisms for production of PAF and IL-6 in cat esophageal mucosa and circular muscle. A segment of normal mucosa was tied at both ends, forming a mucosal sac (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G860-G869, 2005) that was filled with acidic Krebs buffer (pH 5.8) or normal Krebs buffer (pH 7.0) as control and kept in oxygenated Krebs buffer for 3 h. The supernatant of the acidic sac (MS-HCl) abolished contraction of normal muscle strips in response to electric field stimulation. The inhibition was reversed by the PAF antagonist CV3988 and by IL-6 antibodies. PAF and IL-6 levels in MS-HCl and mucosa were significantly elevated over control. IL-6 levels in mucosa and supernatant were reduced by CV3988, suggesting that formation of IL-6 depends on PAF. PAF-receptor mRNA levels were not detected by RT-PCR in normal mucosa, but were significantly elevated after exposure to HCl, indicating that HCl causes production of PAF and expression of PAF receptors in esophageal mucosa and that PAF causes production of IL-6. PAF and IL-6, produced in the mucosa, are released to affect the circular muscle layer. In the circular muscle, PAF causes production of additional IL-6 that activates NADPH oxidase to induce production of H(2)O(2). H(2)O(2) causes formation of IL-1beta that may induce production of PAF in the muscle, possibly closing a self-sustaining cycle of production of inflammatory mediators.  相似文献   

9.
10.
Current evidence indicates that transient receptor potential (TRP) channel activity involves a relationship between opening of pannexin-1 and release of ATP into the extracellular space. We examined the effects of agonists of thermosensitive TRP channels (TRPM8, TRPA1, TRPV1, and TRPV2) on ATP release from rat nasal mucosa, and measured ciliary beat frequency (CBF) using digital high-speed video imaging. Single-cell patch clamping from dissociated rat nasal columnar epithelial cells was performed to confirm the relationship between pannexin-1 and TRP. We demonstrated that ATP release and CBF were significantly potentiated by the heat-sensitive TRPV1 agonist capsaicin (10 μM), but not by other TRP agonists. Capsaicin-induced ATP release and CBF increase were significantly inhibited by the pannexin-1 blockers carbenoxolone (10 μM) and probenecid (300 μM). In addition, the voltage step-evoked currents in the presence of capsaicin were inhibited by the pannexin-1 blockers in single-cell patch clamping. Our results suggest the participation of TRPV1 and pannexin-1 in the physiologic functions of rat nasal mucosa.  相似文献   

11.

Background

Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD) nevertheless can respond to proton pump inhibitors (PPIs), which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE). The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells.

Methods/Findings

Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter.

Conclusions/Significance

PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion.  相似文献   

12.
We have shown that IL-1beta and IL-6, possibly originating from the mucosa in response to injury, inhibit neurally mediated contraction of esophageal circular muscle but do not affect ACh-induced contraction, reproducing the effect of experimental esophagitis on esophageal contraction. To examine the interaction of mucosa and circular muscle in inflammation, we examined the effect of HCl on in vitro esophageal mucosa and circular muscle. Circular muscle strips, when directly exposed to HCl, contracted normally. However, when circular muscle strips were exposed to supernatants of mucosa incubated in HCl (2-3 h, pH 5.8), contraction decreased, and the inhibition was partially reversed by an IL-6 antibody. Supernatants from the mucosa of animals with in vivo-induced acute esophagitis (AE) similarly reduced contraction. IL-6 levels were higher in mucosal tissue from AE animals than in control mucosa and in AE mucosa supernatants than in normal mucosa supernatants. IL-6 levels increased significantly in normal mucosa and supernatants in response to HCl, suggesting increased production and release of IL-6 by the mucosa. IL-6 increased H2O2 levels in the circular muscle layer but not in mucosa. Exposure of the mucosa to HCl caused IL-1beta to increase only in the mucosa and not in the supernatant. These data suggest that HCl-induced damage occurs first in the mucosa, leading to the production of IL-1beta and IL-6 but not H2O2. IL-1beta appears to remain in the mucosa. In contrast, IL-6 is produced and released by the mucosa, eventually resulting in the production of H2O2 by the circular muscle, with this affecting circular muscle contraction.  相似文献   

13.
14.
15.
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.  相似文献   

16.
Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD). We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.  相似文献   

17.
18.
The heat shock response maintains cellular homeostasis following sublethal injury. Heat shock proteins (Hsps) are induced by thermal, oxyradical, and inflammatory stress, and they chaperone denatured intracellular proteins. Hsps also chaperone signal transduction proteins, modulating signaling cascades during repeated stress. Gastroesophageal reflux disease (GERD) affects 7% of the US population, and it is linked to prolonged esophageal acid exposure. GERD is characterized by enhanced and selective leukocyte recruitment from esophageal microvasculature, implying activation of microvascular endothelium. We investigated whether phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK regulate Hsp induction in primary cultures of human esophageal microvascular endothelial cells (HEMEC) in response to acid exposure (pH 4.5). Inhibitors of signaling pathways were used to define the contribution of PI3K/Akt and MAPKs in the heat shock response and following acid exposure. Acid significantly enhanced phosphorylation of Akt and MAPKs in HEMEC as well as inducing Hsp27 and Hsp70. The PI3K inhibitor LY-294002, and Akt small interfering RNA inhibited Akt activation and Hsp70 expression in HEMEC. The p38 MAPK inhibitor (SB-203580) and p38 MAPK siRNA blocked Hsp27 and Hsp70 mRNA induction, suggesting a role for MAPKs in the HEMEC heat shock response. Thus acidic pH exposure protects HEMEC through induction of Hsps and activation of MAPK and PI3 kinase pathway. Acidic exposure increased HEMEC expression of VCAM-1 protein, but not ICAM-1, which may contribute to selective leukocyte (i.e., eosinophil) recruitment in esophagitis. Activation of esophageal endothelial cells exposed to acidic refluxate may contribute to GERD in the setting of a disturbed mucosal squamous epithelial barrier (i.e., erosive esophagitis, peptic ulceration). esophagus; esophagitis; gastroesophageal reflux disease; microvasculature; phosphatidylinositol 3-kinase/Akt; VCAM-1  相似文献   

19.
Eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 bind specifically and exclusively to CC chemokine receptor (CCR) 3, which is a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Bronchial epithelial cells represent an important source of chemokines, and thus we investigated in vitro and in vivo expression of eotaxin-2 and eotaxin-3 in bronchial epithelial cells in comparison with that of eotaxin-1. Immunohistochemistry showed increased expression of both eotaxin-2 and eotaxin-3 in addition to eotaxin-1 in asthmatics. Considerable amounts of eotaxins were secreted by bronchial epithelial lineage. As with eotaxin-1 production, generation of eotaxin-2 and eotaxin-3 by bronchial epithelial cells was up-regulated by IL-4 and IL-13, and attenuated by IFN-gamma and glucocorticoids. In addition to eotaxin-1 expression, but also eotaxin-2 and eotaxin-3 expression in the bronchial epithelium should be taken into consideration when developing the therapeutic strategies to treat eosinophilic airway diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号