首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of unesterified choline by rat brain   总被引:8,自引:0,他引:8  
Two preparations of rat brain (ischemic intact brain and homogenized whole brain) formed large amounts of unesterified (free) choline when incubated at 37 degrees C. The accumulation of choline was inhibited by microwave irradiation of brain, or by heating of brain to 50 degrees C, and was maximal at 37 degrees C at pH 7.4-8.5. Choline formation was only observed in subcellular fractions of brain that contained membranes. In homogenates of brain, choline accumulated at a rate exceeding 10 nmol/mg protein per h. There was a significant decrease in brain phosphatidylcholine concentration (of 50 nmol/mg protein) during incubation for 1 h at 37 degrees C. Concentrations of phosphocholine rose (by 2.3 nmol/mg protein), and concentrations of glycerophosphocholine and sphingomyelin did not change during this period. We used radiolabeled phospholipids to trace the fate of phosphatidylcholine and sphingomyelin during incubations of homogenates of brain. Phosphatidylcholine was degraded to form phosphocholine, glycerophosphocholine and free choline. No lysophosphatidylcholine accumulated. Sphingomyelin was degraded to form phosphocholine and a small amount of free choline. Magnesium ions stimulated choline production, while zinc ions were a potent inhibitor. Other divalent cations (calcium, manganese) had little effect on choline accumulation. ATP concentrations in brain homogenates were less than 5 nmol/mg protein (rapidly microwaved brain contained 27 nmol/mg protein). Addition of ATP or ADP to brain homogenates increased ATP concentrations and significantly inhibited choline accumulation. ATP diminished the formation of choline from added phosphatidylcholine, lysophosphatidylcholine, phosphocholine and glycerophosphocholine. The effects of ATP, zinc ion, or magnesium ion upon choline accumulation were not mediated by changes in the rates of utilization of choline for formation of phosphocholine or phosphatidylcholine. In summary, we showed that there was enhanced formation of choline when ATP concentrations within brain were low. This choline was derived, in part, from the degradation of phosphatidylcholine, and we suggest that phospholipase A activity was the primary initiator of choline release from this phospholipid.  相似文献   

2.
Increasing interest in receptor-regulated phospholipase C and phospholipase D hydrolysis of cellular phosphatidylcholine motivates the development of a sensitive and simple assay for the water-soluble hydrolytic products of these reactions, phosphocholine and choline respectively. Choline was partially purified from the methanol/water upper phase of a Bligh & Dyer extract by ion-pair extraction using sodium tetraphenylboron, and the mass of choline was determined by a radioenzymic assay using choline kinase and [32P]ATP. After removal of choline from the upper phase, the mass of residual phosphocholine was determined by converting it into choline by using alkaline phosphatase, followed by radioactive phosphorylation. In addition to excellent sensitivity (5 pmol for choline and 10 pmol for phosphocholine), these assays demonstrated little mutual interference (phosphocholine----choline = 0%; choline----phosphocholine = 5%), were extremely reproducible (average S.E.M. of 3.5% for choline and 2.9% for phosphocholine), and were simple to perform with instrumentation typically available in most laboratories. In addition, the ability to apply the extraction technique to the upper phase of Bligh & Dyer extracts permitted simple analysis not only of choline and phosphocholine, but also of phosphatidylcholine and lipid products of phospholipase C and phospholipase D activity (1,2-diacylglycerol and phosphatidic acid respectively) from the same cell or tissue sample.  相似文献   

3.
The uptake and metabolism of [14C]choline in dissociated rat brain embryo cell cultures was examined as a function of the extracellular choline concentration. Choline uptake did not follow normal Michaelis-Menten kinetics, but rather exhibited two components with apparent Km of 0.016 mM and 0.96 mM. At low choline concentrations (high affinity uptake) most of the [14C]choline label was present in the phosphocholine fraction prior to the appearance of label in phospholipids. At high choline concentrations (low affinity uptake) a large proportion of the radioactivity was converted into acetylcholine. The dissimilarities between the formation of phosphocholine and acetylcholine as a function of choline concentration might be explained by the existence of two mutually independent enzymatic activities with different Km affinities for choline. Kinetic data augmented by double label studies, suggested that formation of choline phosphoglyceride proceeds entirely via a phosphocholine intermediate. Nearly all radioactivity in the lipid fraction is incorporated into choline phosphoglycerides. A higher turnover rate of choline incorporation into choline phosphoglycerides, accompanied by an increase in the levels of glycerophosphocholine, was observed in older cultures as compared to younger cultures. The metabolic implications of these findings in cultured brain cells in comparison with other in vitro systems are discussed.  相似文献   

4.
Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.  相似文献   

5.
The purpose of this study was to examine the effect of exogenous CDP-choline on choline metabolism and phosphatidylcholine biosynthesis in adult rat ventricular myocytes. Choline uptake and metabolism were examined, using [methyl3 H] choline. CDP-choline in the medium produced a concentration dependent reduction in the amount of radio-label in phosphocholine and phospholipid but it did not alter choline uptake into the myocytes. CDP-choline also did not antagonize the effect of hypoxia on phosphatidylcholine synthesis; rather it accentuated the hypoxia-induced reductions in cellular phosphocholine and phosphatidylcholine biosynthesis. These results indicate that the exogenous administration of CDP-choline alters choline metabolism in the heart by reducing the formation of phosphocholine and phosphatidylcholine without altering choline uptake and suggest an effect of a CDP-choline metabolite on choline metabolism which is not effective in opposing the effect of hypoxia on phosphatidylcholine biosynthesis.  相似文献   

6.
Choline deficiency and treatment with methotrexate (MTX) both are associated with fatty infiltration of the liver. Choline, methionine, and folate metabolism are interrelated and converge at the regeneration of methionine from homocysteine. MTX perturbs folate metabolism, and it is possible that it also influences choline metabolism. We fed rats a choline deficient diet for 2 weeks and/or treated them with methotrexate (MTX; 0.1 mg/kg daily). Choline deficiency lowered hepatic concentrations of choline (to 43% control), phosphocholine (PCho; to 18% control), glycerophosphocholine (GroPCho; to 46% control), betaine (to 30% control), phosphatidylcholine (PtdCho; to 62% control), methionine (to 80% control), and S-adenosylmethionine (AdoMet; to 57% control), while S-adenosylhomocysteine (AdoHcy) and triacylglycerol concentrations increased (to 126% and 319% control, respectively). MTX treatment alone lowered hepatic concentrations of PCho (to 48% control), GroPCho (to 69% control), betaine (to 55% control), and AdoMet (to 75% control). The addition of MTX treatment to choline deficiency resulted in a larger decrease in AdoMet concentrations (to 75% control) and larger increases in AdoHcy and triacylglycerol concentrations (to 150% and 500% control, respectively) than was observed in choline deficiency alone. Livers from MTX-treated animals used radiolabeled choline to make the same metabolites as did livers from controls (most of the label was converted to PCho and betaine). In choline deficient animals, most of the labeled choline was converted to PtdCho. Therefore, MTX depleted hepatic PCho, GroPCho, and betaine by a mechanism that was different from that of choline deficiency. MTX increased the extent of fatty infiltration of the liver in choline deficient rats, and choline deficiency and MTX treatment damaged hepatocytes as measured by leakage of alanine aminotransferase activity. Our data are consistent with the hypothesis that the fatty infiltration of the liver associated with MTX treatment occurs because of a disturbance in choline metabolism.  相似文献   

7.
High-performance liquid chromatography of water-soluble choline metabolites   总被引:8,自引:0,他引:8  
We have developed a new method for the separation of [3H]choline metabolites by high-performance liquid chromatography. Using this method it is possible to separate, in one step, all of the known major water-soluble choline metabolites present in crude acid extracts of cells that have been incubated with [3H]choline, with baseline or near-baseline resolution. We use a gradient HPLC system with a normal-phase silica column as the stationary phase, and a linear gradient of increasing polarity and ionic strength as the mobile phase. The mobile phase is composed of two buffers: Buffer A, containing acetonitrile/water/ethyl alcohol/acetic acid/0.83 M sodium acetate (800/127/68/2/3), and buffer B (400/400/68/53/79), pH 3.6. A linear gradient from 0 to 100% buffer B, with a slope of 5%/min, is started 15 min after injection. At a flow rate of 2.7 ml/min and column temperature of 45 degrees C, typical retention times for the following compounds are (in min): betaine, 10; acetylcholine, 18; choline, 22; glycerophosphocholine, 26; CDP-choline, 31; and phosphorylcholine, 40. This procedure has been applied in tracer studies of choline metabolism utilizing the neuronal NG108-15 cell line and rat hippocampal slices as model systems. While the compounds labeled in the NG108-15 cells were primarily phosphorylcholine and glycerophosphocholine, reflecting high rates of phospholipid turnover, in the hippocampal slices choline and acetylcholine were the major labeled species. Identification of individual peaks was confirmed by comparing the elution profiles of untreated cell extracts with extracts that had been treated with hydrolyzing enzymes of differing specificities. This HPLC method may be useful in studies of acetylcholine and phosphatidylcholine metabolism, and of the possible interrelationships of these compounds in cholinergic cells.  相似文献   

8.
Choline kinase alpha (CK-alpha) is one of two mammalian enzymes that catalyze the phosphorylation of choline to phosphocholine in the biosynthesis of the major membrane phospholipid, phosphatidylcholine. We created mice lacking CK-alpha with an embryonic stem cell line containing an insertional mutation in the gene for CK-alpha (Chka). Embryos homozygous for the mutant Chka allele were recovered at the blastocyst stage, but not at embryonic day 7.5, indicating that CK-alpha is crucial for the early development of mouse embryos. Heterozygous mutant mice (Chka(+/-)) appeared entirely normal in their embryonic development and gross anatomy, and they were fertile. Although choline kinase activity was decreased by approximately 30%, the amount of phosphatidylcholine in cells and the levels of other enzymes involved in phosphatidylcholine biosynthesis were unaffected. Phosphatidylcholine biosynthesis measured by choline incorporation into hepatocytes was also not compromised in Chka(+/-) mice. Enhanced levels of choline and attenuated levels of phosphocholine were observed in both the livers and testes of Chka(+/-) mice. Triacylglycerol and cholesterol ester were elevated approximately 2-fold in the livers, whereas neutral lipid profiles in plasma were similar in Chka(+/-) and wild-type (Chka(+/+)) mice. Thus, Chka is an essential gene for early embryonic development, but adult mice do not require full expression of the gene for normal levels of phosphatidylcholine.  相似文献   

9.
The effects of the potent tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on phosphatidylcholine (PtdCho) metabolism were investigated in the neuroblastoma X glioma hybrid cell line NG108-15. TPA (100 nM) stimulated by 150-200% the release into the medium of 3H radioactivity from cells that had been pre-labelled with [3H]choline. H.p.l.c. analysis of the medium revealed that TPA stimulated the release of only free [3H]choline (212 +/- 11% of control), without affecting such other labelled metabolites as [3H]phosphocholine and [3H]glycerophosphocholine. This effect was concentration-dependent, with a half-maximal effect obtained at 27.5 +/- 6.8 nM, and was observable as early as 5-10 min after exposure to TPA. The TPA-induced release of [3H]choline into the medium was accompanied by a small and variable decrease in cellular [3H]PtdCho (to 93 +/- 4% of control). However, the radioactivity associated with water-soluble cellular choline metabolites (mainly [3H]phosphocholine and [3H]glycerophosphocholine) remained unchanged. TPA also stimulated the release of [3H]choline derived from [3H]PtdCho that had been produced via the methylation pathway from [3H]methionine. These data suggest that phosphatidylcholine may serve as the source of free choline released from the cells in response to TPA. The possible enzymic mechanisms underlying this response are discussed.  相似文献   

10.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The K(m) values for choline and ATP are found to be 145+/-20 microM and 2.5+/-0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the alpha and beta content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   

11.
The uptake and metabolism of [methyl-14C]choline in the organotypic culture of newborn mouse cerebellum was examined. Explants of 8 day in vitro (8 DIV) were incubated for 48 h under standard conditions with 21.0 microM [14C]choline at 35 degrees C. During the first hour of incubation, most of the [14C]choline incorporated was transferred to phosphocholine. The amount of [14C]phosphocholine increased gradually at the initial rate of 0.95 +/- 0.17 nmol/mg protein/h and saturated after 7 h (4.31 +/- 1.30 nmol/mg protein). The synthesis of [14C]phospholipids was observed after a distinct time lag. About 96% of the radioactivity in the lipids was incorporated into phosphatidylcholine. The amount of phosphatidylcholine increased linearly up to 48 h of incubation: 11.9 +/- 2.10 nmol/mg protein at 24 h and 21.9 +/- 2.43 nmol/mg protein at 48 h. From double-label studies it was found that phosphocholine was a precursor of phosphatidylcholine. The content of [14C]choline within explants remained nearly constant through the incubation period. Acetylcholine synthesis in mouse cerebellum culture was relatively low, and the content remained constant through the incubation period (0.006 +/- 0.003 nmol/mg protein). Activities of acetylcholine synthesis of cerebral and cerebellar homogenates were compared. Phosphatidylcholine synthesized in mouse cerebellum culture separated into two spots on thin layer chromatograph using silica gel G plates. Gas chromatographs suggested that the separation depends on the difference in fatty acid composition.  相似文献   

12.
The effect of an analogue of cAMP on the uptake and metabolism of choline in the heart was studied in isolated cardiac cells. The cells were obtained from 7-day-old chick embryos and maintained in culture. The effects of cAMP were studied using the dibutyryl cAMP analogue and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. After a 2-h incubation with [3H]choline, about 85% of the label was recovered in phosphocholine, with most of the rest in phospholipid. During a subsequent chase incubation, [3H]phosphocholine was transferred to phosphatidylcholine with little accumulation in CDP-choline. This suggests the rate-limiting step for the conversion of phosphocholine to phosphatidylcholine in these cells is the synthesis of CDP-choline. cAMP decreased the incorporation of choline into phosphatidylcholine, but did not change the flux of metabolites through the step catalyzed by CTP:phosphocholine cytidylyltransferase. cAMP had little effect on choline uptake at low (1-25 microM) extracellular choline concentrations, but significantly (p less than 0.05) decreased choline uptake at higher (37.5-50 microM) extracellular choline concentrations. Thus, cardiac cells take up and metabolize choline to phosphocholine, with CTP:phosphocholine cytidylyltransferase being the rate-limiting step in phosphatidylcholine biosynthesis. cAMP decreases [3H]choline uptake and its subsequent incorporation into phosphocholine and phospholipid. However, the metabolism of choline within the cell is unaffected.  相似文献   

13.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The Km values for choline and ATP are found to be 145 ± 20 μM and 2.5 ± 0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the α and β content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   

14.
The concentration of unesterified choline in the plasma in the jugular vein of the rat (0.85 nmol/ml) was found to be three times that of the arterial supply to the brain (0.25 nmol/ml), indicating a higher efflux than uptake of unesterified choline by the brain. No such difference was found for the rabbit and no arterio-venous difference for phosphatidylcholine or lysophosphatidylcholine was observed in either species. No arterio-venous difference was found for choline in blood cells. The infusion of [Me-3H]choline into the circulation of the rat or rabbit indicated an uptake of radioactive choline by the brain and an efflux of non-radioactive choline. In the rabbit such an infusion produced a steady rise in the labelling of phosphatidylcholine and lysophosphatidylcholine in the plasma. When [14C2]ethanolamine was injected intraperitoneally into the rat there was a labelling of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in the plasma and cells of blood from the jugular vein and the arterial supply, as well as in the brain tissue. However, no labelling of unesterified choline in these tissues could be detected. Unesterified choline was shown to be liberated into the plasma when whole blood from the rat or man, but not the rabbit, was incubated for short periods at 30 degrees C.  相似文献   

15.
1. Adult rat hepatocytes were isolated by collagenase perfusion and were maintained in monolayer culture for 24h. 2. Choline metabolism and phosphatidylcholine biosynthesis were studied in these cells by performing pulse-chase studies at physiological concentrations (1-40 microM) of (Me-3H)-labelled or unlabelled choline in the culture medium. 3. During the 15 min pulse incubation, choline entering the cells was rapidly phosphorylated to phosphocholine or oxidized to betaine. Low concentrations of choline in the medium decreased the relative amount of choline oxidized. 4. During the 3 h chase period, the radioactivity in the phosphocholine pool was transferred to phosphatidylcholine. Very little radioactivity was associated with CDP-choline. These results provide good evidence that the rate-limiting step for phosphatidylcholine biosynthesis in these cultured hepatocytes is the conversion of phosphocholine into CDP-choline. Similar results were obtained for all concentrations of choline in the culture medium. 5. Cellular concentrations of phosphocholine were unaffected by the concentration of choline (1-40 microM) in the medium. 6. The majority of the label associated with betaine was secreted into the culture medium during the chase incubation. 7. From the pulse-chase studies, and the cellular phosphocholine concentrations, it was possible to estimate the rate of phosphatidylcholine biosynthesis (2.2, 2.8, 3.1 and 3.7 nmol/min per g wet weight of cells cultured in 1, 5, 10 and 40 microM-choline respectively for up to 4.25 h).  相似文献   

16.
The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species.  相似文献   

17.
The effect of expression of the Harvey-ras oncogene on phosphatidylcholine metabolism in C3H10T1/2 mouse fibroblast cells was examined. There were multiple changes in the CDP-choline pathway for phosphatidylcholine biosynthesis in the ras-expressing cells. The activity of the first enzyme in the pathway, choline kinase, was stimulated 1.9-fold, while the activity of the second enzyme, CTP:phosphocholine cytidylyltransferase, was decreased by one-half. High levels of intracellular phosphocholine measured in the ras cells were consistent with the altered activities of choline kinase and cytidylyltransferase. The overall rate of phosphatidylcholine synthesis appeared to be increased because the turnover rate of phosphocholine from the intracellular pool was higher in the ras-transfected cells. There also appeared to be an increased rate of phosphatidylcholine degradation in ras-expressing C3H10T1/2 cells. Very high levels of glycerophosphocholine (6-fold increased over control cells) suggested that phospholipase A was activated in these cells. These results indicate that the ras oncogene product directly or indirectly causes an increased turnover of phosphatidylcholine in C3H10T1/2 cells.  相似文献   

18.
Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous Caenorhabditis elegans choline kinase, a model of the ternary ADP.phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme.  相似文献   

19.
A luminal supply of biliary phosphatidylcholine is important in the translocation of absorbed fat into lymph and in the amount and composition of phosphatidylcholine concurrently synthesized. This study was undertaken to determine whether the effect was due to absorbed lysophosphatidylcholine, to a specific (1-palmitoyl) biliary lysophosphatidylcholine or to extra choline supplied by lysophosphatidylcholine. Rats with bile fistulae and thoracic duct lymph fistulae were given test meals of oleic acid and monoolein (molar ratio 2 : 1) infused duodenally for 8 h. Addition of choline chloride to the test meal increased lymphatic output of triglyceride and phospholipid but not to values found previously in rats with supplements of bile phosphatidylcholine or with bile ducts intact. Addition of dioleoyl phosphatidylcholine increased triglyceride and phospholipid output to values found in rats with intact bile ducts. Since dioleoyl phosphatidylcholine was as efficient as biliary phosphatidylcholine it was concluded that a luminal supply of 1-palmitoyl lysophosphatidylcholine was not essential. It seemed likely from the smaller effect of supplemented choline and from the fatty acid composition of lymph phosphatidylcholine that the essential requirement was a supply of absorbed lysophosphatidylcholine for rapid reacylation to phosphatidylcholine.  相似文献   

20.
Abstract— The metabolism of [14C]choline has been studied in the isolated perfused phrenic nerve-diaphragm of the rat. We obtained no evidence that acetylcholine was synthesized from labelled choline in this system. There was extensive incorporation of the choline into phosphatidylcholine and its precursors, cytidinediphosphocholine (CDP-choline) and phosphocholine. Autoradiographic studies indicated that the lipids of myelin sheaths and nerve endings were the primary sites labelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号