首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to assess the effect of streptozotocin diabetes and insulin treatment on adrenic acid Δ4 desaturation and fatty acid composition of liver microsomes in Wistar rats fed a fat free semi-synthetic basal diet supplemented with 10% EPA-rich marine oil. Results showed that, in liver microsomes of hyperglycemic rats, the ratio in total lipids was elevated and desaturation of adrenic acid to n-6 docosapentaenoic acid was enhanced. Insulin treatment with 2.0 I.U./100 g body weight−1 twice a day for 3 days resulted in hypoglycemia and suppressed both the increased Δ4 n-6 desaturation and ratio. It is concluded that the Δ4 desaturation enzyme system, which is activated by experimental diabetes, is regulated by mechanisms different from those regulating Δ6 and Δ5 desaturations.  相似文献   

2.
Sesamin is a specific inhibitor of Δ5 desaturation, the conversion from dihomo-γ-linolenic acid (20: 3, n-6) to arachidonic acid (AA, 20: 4, n-6). Previously, we reported that sesamin inhibited Δ5 desaturation of n-6 fatty acids in rat hepatocytes but not that of n-3 fatty acids, from 20: 4 (n-3) to eicosapentaenoic acid (EPA, 20: 5, n-3). In this study, we investigated the interaction of sesamin and EPA on Δ5 desaturation of both series and the n-6/n-3 fatty acids ratio by measuring actural fatty acid contents in vivo. Rats were fed three types of dietary oils; 1) linoleic acid (LA, 18: 2, n-6): linolenic acid (LLA, 18: 3, n-3) = 3: 1, n-6/n-3 ratio of 3: 1 (LA group), 2) LA: LLA =1: 3, n-6/n-3 ratio of 1: 3 (LLA group), 3) LA: LLA: EPA =1: 0.5: 3, n-6/n-3 ratio of 1: 3.5 (EPA group) with or without sesamin (0.5% w/w) for 4 weeks. In all groups, sesamin administration increased the content of dihomo-γ-linolenic acid (20: 3, n-6) in the liver and decreased the Δ5 desaturation index of n-6 fatty acid, the ratio of 20: 4/20: 3 (n-6). On the contrary, the Δ5 desaturation index of n-3 fatty acid, the ratio of 20: 5 + 22: 5 + 22: 6/20: 4 (n-3), was increased by the administration of sesamin. These results suggest that sesamin inhibits the A5 desaturation of n-6 fatty acid, but not that of n-3 fatty acid in rat livers. Sesamin administration decreased incorporation of EPA (n-3) and simultaneously increased the AA (n-6) content in the liver. The n-6/n-3 ratio in the liver was increased by administering sesamin under n-3 rich conditions, i.e., the LLA and EPA groups.  相似文献   

3.
The triacylglycerol synthesis from exogenous linoleic acid (18:2(n-6], linolenic acid (18:3(n-3], dihomogammalinolenic acid (20:3(n-6], eicosapentaenoic acid (20:5(n-3] and oleic acid (18:1(n-9] was observed to be significantly increased in isolated liver cells from female rats compared with males. The rate of fatty acid oxidation and phospholipid biosynthesis was concomitantly more important in male cells. With the C22-polyenoic fatty acids, adrenic acid (22:4(n-6] and docosahexaenoic acid (22:6(n-3), only a minor sex-related difference in fatty acid metabolism was found.  相似文献   

4.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

5.
The present study was undertaken to establish whether the formation of 22:6n-3 from 18:3n-3 and/or 20:5n-3 can occur in turbot liver and if this conversion is consistent with the operation of a Delta4 desaturase-independent pathway. At the same, time the effects of feeding a diet devoid of long chain polyunsaturated fatty acids (PUFA) on the patterns of esterification and modification of 18:3n-3, 20:5n-3 and 18:2n-6 by turbot hepatocytes and liver microsomes were examined. For this purpose, two groups of fish (25-30 g) were employed: one was fed a commercial diet containing fish oil (FO) and thus rich in long chain n-3 PUFA and the other was fed an experimental diet based on olive oil (OO). After 5 months of feeding, hepatocytes and liver microsomes isolated from individuals in the two groups of fish were incubated with [1-(14)C]-PUFA [either 18:3n-3, 20:5n-3 or 18:2n-6]. After 3 h of incubation, most radioactivity from all three radiolabelled substrates incorporated into lipids by hepatocytes and microsomes was recovered in the original substrate. The formation of desaturation products of n-3 radiolabelled substrates was higher in hepatocytes isolated from OO-fed than FO-fed fish. Small amounts of radiolabelled 22:6n-3 were formed from [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3, but only by hepatocytes from fish fed OO, which also synthesised a small amount of radiolabelled 24:6n-3 from 14C-20:5n-3. Elongation products predominated over desaturation products in hepatic microsomes from both groups of fish studied, particularly in microsomes from fish fed FO. The results confirm that regardless of the long chain PUFA content of the diet, the production of 22:6n-3 in turbot liver from 18:3n-3 and/or 20:5n-3, and of 20:4n-6 from 18:2n-6, is very limited. The presence of radiolabelled 24:6n-3 in microsomes coupled with the absence of radiolabelled 22:6n-3 suggests that the formation of 22:6n-3 that does occur in turbot liver cells, may involve C24 intermediates and peroxisomal beta-oxidation.  相似文献   

6.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected.  相似文献   

7.
The partitioning between peroxisomal and mitochondrial beta-oxidation of [1-14C]eicosapentaenoic acid (20:5(n-3] and [1-14C]arachidonic acid (20:4(n-6)) was studied. In hepatocytes from fasted rats approximately 70% of the fatty acid substrate was oxidized with oleic, linoleic, eicosapentaenoic and docosahexaenoic (22:6(n-3)) acid, even more with adrenic (22:4(n-6)) and less with arachidonic acid. When the mitochondrial oxidation was suppressed by fructose refeeding and by (+)-decanoylcarnitine, the fatty acid oxidation in per cent of that in cells from fasted rats was with 18:1(n-9) 7%, 18:2(n-6) 8%, 20:4(n-6) 12%, 20:5(n-3) 20%, 22:4(n-6) 57% and for 22:6(n-3) 29%. The fraction of 14C recovered in palmitate and other newly synthesized fatty acids after fructose refeeding decreased in the order 22:4(n-6) greater than 22:6(n-3) greater than 20:5(n-3) greater than 20:4(n-6) and was very small with 18:1(n-9) and 18:2(n-6). In cells from both fed and fructose-refed animals 20:5(n-3) was efficiently elongated to 22:5(n-3) and 22:6(n-3). 20:5(n-3) and 20:4(n-6) were not elongated after fasting. The phospholipid incorporation with [1-14C]20:5(n-3) decreased during prolonged incubations while it remained stable with [1-14C]arachidonic acid. The results suggest that peroxisomes contribute more to the oxidation of 20:5(n-3) than with 20:4(n-6) although both substrates are probably oxidized mainly in the mitochondria.  相似文献   

8.
The fatty acid elongation-desaturation ability of 5,8,11,14-eicosatetraenoic (20:4(n-6)) and 5,8,11,14,17-eicosapentaenoic (20:5(n-3)) acids was determined in both liver microsomal and light mitochondrial (rich in peroxisomes) fractions of untreated and clofibrate treated rats. The elongation and the subsequent desaturation steps were performed in the corresponding favorable media. 20:5(n-3) elongation was about 2-times more extensive than that of 20:4(n-6). Clofibrate feeding for 10 days resulted in a marked decrease in the elongation rate with the two substrates, while the delta 4 desaturation rate was increased. There were small differences in the elongation rate between the microsomal and light mitochondrial fractions, however, the relative delta 4 desaturation rate was higher in the light mitochondrial fraction than microsomes.  相似文献   

9.
The hypothesis that the last step in the biosynthesis of 4,7,10,13,16,19-22:6 from linolenate is catalyzed by an acyl-CoA-dependent 4-desaturase has never been evaluated by direct experimentation. When rat liver microsomes were incubated with [1-14C]7,10,13,16,19-22:5, under conditions where linoleate was readily desaturated to 6,9,12-18:3, it was never possible to detect the product of the putative 4-desaturase. In the presence of malonyl-CoA, 7,10,13,16,19-22:5 was sequentially chain-elongated to 9,12,15,18,21-24:5, followed by its desaturation at position 6 to give 6,9,12,15,18,21-24:6. Microsomes desaturated 9,12,15,18,21-24:5 at rates similar to those observed for metabolizing linoleate to 6,9,12-18:3. Rat hepatocytes metabolize [1-14C]7,10,13,16,19-22:5 to 22:6(n-3), but in addition, it was possible to detect small amounts of esterified 24:5(n-3) and 24:6(n-3) in phospholipids, which is a finding consistent with their role as obligatory intermediates in 22:6(n-3) biosynthesis. When 3-14C-labeled 24:5(n-3) or 24:6(n-3) were incubated with hepatocytes, only a small amount of either substrate was esterified. [3-14C] 24:5(n-3) was metabolized both by beta-oxidation to 22:5(n-3) and by serving as a precursor for the biosynthesis of 24:6(n-3) and 22:6(n-3). The primary metabolic fate of [3-14C]24:6(n-3) was beta-oxidation to 22:6(n-3), followed by its acylation into membrane lipids. Our results thus document that 22:5(n-3) is the precursor for 22:6(n-3) but via a pathway that is independent of a 4-desaturase. This pathway involves the microsomal chain elongation of 22:5(n-3) to 24:5(n-3), followed by its desaturation to 24:6(n-3). This microsomal product is then metabolized, via beta-oxidation, to 22:6(n-3).  相似文献   

10.
A close relationship between dietary oils and fatty acid composition of bass liver and liver microsomes and mitochondria is reported in the present paper. Among the data the most relevant is the evidence for elongation and desaturation of dietary 18:3 n-3 and 18:2 n-6, giving as a result an increase of 22:6 n-3 and 20:4 n-6 levels respectively. The importance of such findings in carnivore marine fish is discussed and compared with literature data.  相似文献   

11.
The effect of chronic hyperprolactinemia on the delta6- and delta5-desaturation activity, total lipid and fatty acid composition, as well as fluorescence anisotropy, was studied in liver microsomes from anterior pituitary-grafted rats. We observed a depression in delta6-desaturation activity but no changes in the delta5-desaturation activity in the grafted animals. The microsomal fraction from the hyperprolactinemic rats contained significantly less amount of linoleic acid and a higher content of 20:4 n-6, 22:5 n-6 and 22:6 n-3 acids. Lipid rotational mobility was increased in microsomes as well as in liposomes obtained from the microsomes of transplanted animals. The fluidifying effect induced by PRL was located in the deepest zone of the membrane. The results obtained indicate that high levels of prolactin induce changes in polyunsaturated fatty acid distribution in liver microsomes, which regulates the lipid rotational mobility and hence membrane fluidity.  相似文献   

12.
It was demonstrated that the rat liver cell line BRL-3A converted exogenous C19 odd chain-polyunsaturated fatty acids (PUFAs) into the corresponding C21- and C23-PUFAs as follows: 21:3n-8, 21:4n-8, 23:3n-8, and 23:4n-8 (from 19:3n-8); 21:4n-5, 21:5n-5, 23:4n-5, and 23:5n-5 (from 19:4n-5); 21:5n-2, 21:6n-2, 23:5n-2, and 23:6n-2 (from 19:5n-2). It presumed that these C19 PUFAs were converted through the mimic route to docosahexaenoic acid (22:6n-3) from eicosapentaenoic acid (20:5n-3). In addition, the characterization of the change of fatty acid composition of cellular lipids in rat liver cells were examined, using 19:4n-5 and several fatty acid desaturation inhibitors. Curcumin related compounds, curcumin, capsaicin, isoeugenol, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and gallic acid esters with near five carbon numbered alcohol had great changes of fatty acid composition of cellular lipids based on inhibition of the A6 desaturation of C24-PUFAs in rat liver cells.  相似文献   

13.
Fatty acid compositions of liver phospholipid, cholesterol ester and triacylglycerol fractions obtained from streptozotocin-induced diabetic rats were compared to those from control or from simple-acidotic rats. Significant reductions of arachidonic acid proportions in phospholipid and cholesterol ester were found on the 3rd day after the streptozotocin treatment. In triacylglycerol, arachidonic acid and the other desaturation and elongation products of linoleic acid except for gamma-linolenic acid were increased in the diabetic rats. Although essential fatty acid composition in liver phospholipid and cholesterol ester of simple-acidotic rats did not differ from control rats, dihomo-gamma-linolenic acid, arachidonic acid, adrenic acid and docosapentaenoic acid (22:5(n - 6] contents in liver TG were significantly increased over those in control rats and were similar to those in diabetic rats. These results suggest that metabolic acidosis may contribute to the fatty acid abnormalities observed in diabetic animals.  相似文献   

14.
Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, ethanolamine, and-serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired Δ5 and Δ6 desaturation: linoleic acid and dihomo-γ-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.  相似文献   

15.
Kim HY  Bigelow J  Kevala JH 《Biochemistry》2004,43(4):1030-1036
Neuronal membranes contain high levels of phosphatidylserine (PS) and docosahexaenoic acid (22:6n-3, DHA). In this study, substrate preference in PS synthesis was determined to gain insight on the biochemical basis for concentrating PS in neuronal membranes where 22:6n-3 is highly enriched. We first established an in vitro assay method using unilamellar vesicles (LUV) of deuterium-labeled substrates and reversed-phase HPLC/electrospray ionization (ESI) mass spectrometry. The PS production by the incubation of deuterium-labeled substrate and microsomal fractions was monitored. We found that tissue-specific substrate preference exists in PS synthesis. Microsomes from the cerebral cortex synthesized PS from 18:0,22:6-PC most favorably among the PC substrates tested, followed by 18:0,22:5-PC, resulting in the PC substrate preference in the order of 18:0,22:6 > 18:0,22:5 > 18:0,20:4 = 18:0,18:1. Liver microsomes also preferred 18:0,22:6-PC as the substrate in PS synthesis but did not use 18:0,22:5-PC favorably. The 18:0,22:5-PC species was converted to PS at the similar extent as 18:0,20:4- or 18:0,18:1-PC species in the liver. Both brain and liver microsomes showed a preference for 18:0 over 16:0 as the sn-1 fatty acid. From these data it was deduced that preferential conversion of 18:0,22:6-PC to the corresponding PS species is at least partly responsible for concentrating PS in neuronal tissues where 22:6n-3 is particularly abundant. The distinctive preference for 18:0,22:5-PS observed with brain microsomes may help to maintain PS at a high level in the brain when 22:6n-3 is replaced by 22:5n-3 as in the case of n-3 fatty acid deficiency.  相似文献   

16.
The hepatic fatty acid metabolism was investigated in rats stressed by selenium deficiency and enhanced fish oil intake. Changes in the composition of lipids, peroxides, and fatty acids were studied in the liver of rats fed either a Sedeficient (8 microg Se/kg) or a Se-adequate (300 microg Se/kg) diet, both rich in n-3 fatty acid-containing fish oil (100 g/kg diet) and vitamin E (146 mg alpha-tocopherol/kg diet). The two diets were identical except for their Se content. Se deficiency led to a decrease in hair coat density and quality as well as to changes in liver lipids, individual lipid fractions and phospholipid fatty acid composition of the liver. The low Se status did reduce total and reduced glutathione in the liver but did not affect the hepatic malondialdehyde level. In liver phospholipids (PL), Se deficiency significantly reduced levels of palmitic acid [16:0], fatty acids of the n-3 series such as DHA [22:6 n-3], and other long-chain polyunsaturates C-20-C-22, but increased n-6 fatty acids such as linoleic acid (LA) [18:2 n-6]. Thus, the conversion of LA to arachidonic acid was reduced and the ratio of n-6/n-3 fatty acids was increased. As in liver PL, an increase in the n-6/n-3 ratio was also observed in the mucosal total fatty acids of the small intestine. These results suggest that in rats with adequate vitamin E and enhanced fish oil intake, Se deficiency affects the lipid concentration and fatty acid composition in the liver. The changes may be related to the decreased levels of selenoenzymes with antioxidative functions. Possible effects of Se on absorption, storage and desaturation of fatty acids were also discussed.  相似文献   

17.
The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.  相似文献   

18.
The effects of an essential fatty acid deficient diet were investigated on the phospholipid fatty acids of several membrane fractions of the rat anterior pituitary, the secretion of which is known to be partly dependent on the membrane phospholipidic constituents. In standard dietary conditions, arachidonic acid (20:4n-6) and its elongation product, adrenic acid (22:4n-6), were the two main polyunsaturated fatty acids in all fractions studied. In rats deprived of EFA for 6 weeks after weaning, the levels of both 20:4n-6 and 22:4n-6 were not changed in microsomal + plasma membrane and nuclear fractions, whereas they were decreased in heavy mitochondrial and light mitochondrial fractions. The present data suggest a mechanism of compensation between membrane fractions which may preferentially preserve 20:4n-6 and 22:4n-6 in discrete membrane fractions.  相似文献   

19.
To investigate the metabolism and distribution of docosapentaenoic acid (22:5n-6, DPA) in the liver and testis of growing rats, 22:5n-6 was administered to their dams. Newborn rats with a low hepatic arachidonic acid (20:4n-6, AA) level were generated by administrating a diet rich in docosahexaenoic acid (22:6n-3, DHA) but n-6 fatty acid (FA) free to pregnant dams. After parturition, 22:5n-6 or linoleic acid (18:2n-6, LA) was administered with a high level of 22:6n-3 to the dams until weaning. At weaning, the hepatic 20:4n-6 level was significantly highest in the DPA-DHA but not LA-DHA diet-fed animals. The hepatic delta-6 desaturase (D6D) mRNA abundance was significantly lower in both the LA-DHA and DPA-DHA diet-fed animals, connoted with the 20:4n-6 content recovered by 22:5n-6 that did not involve D6D and supporting the occurrence of retroconversion in the liver of the growing rats. The low D6D level in the 3-week-old testis was not in proportion to the elevated 22:5n-6 level, implying that early testicular 22:5n-6 accumulation might require supply from the circulation system.  相似文献   

20.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号