首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of regulation relationship of protein interactions is crucial for the mechanism research in signaling network. Bioinformatics methods can be used to accelerate the discovery of regulation relationship between protein interactions, to distinguish the activation relations from inhibition relations. In this paper, we describe a novel method to predict the regulation relations of protein interactions in the signaling network. We detected 4,417 domain pairs that were significantly enriched in the activation or inhibition dataset. Three machine learning methods, logistic regression, support vector machines(SVMs), and naïve bayes, were explored in the classifier models. The prediction power of three different models was evaluated by 5-fold cross-validation and the independent test dataset. The area under the receiver operating characteristic curve for logistic regression, SVM, and naïve bayes models was 0.946, 0.905 and 0.809, respectively. Finally, the logistic regression classifier was applied to the human proteome-wide interaction dataset, and 2,591 interactions were predicted with their regulation relations, with 2,048 in activation and 543 in inhibition. This model based on domains can be used to identify the regulation relations between protein interactions and furthermore reconstruct signaling pathways.  相似文献   

2.
MOTIVATION: Our purpose is to develop a statistical modeling approach for cancer biomarker discovery and provide new insights into early cancer detection. We propose the concept of dependence network, apply it for identifying cancer biomarkers, and study the difference between the protein or gene samples from cancer and non-cancer subjects based on mass-spectrometry (MS) and microarray data. RESULTS: Three MS and two gene microarray datasets are studied. Clear differences are observed in the dependence networks for cancer and non-cancer samples. Protein/gene features are examined three at one time through an exhaustive search. Dependence networks are constructed by binding triples identified by the eigenvalue pattern of the dependence model, and are further compared to identify cancer biomarkers. Such dependence-network-based biomarkers show much greater consistency under 10-fold cross-validation than the classification-performance-based biomarkers. Furthermore, the biological relevance of the dependence-network-based biomarkers using microarray data is discussed. The proposed scheme is shown promising for cancer diagnosis and prediction. AVAILABILITY: See supplements: http://dsplab.eng.umd.edu/~genomics/dependencenetwork/  相似文献   

3.

Background

Polygenic diseases are usually caused by the dysfunction of multiple genes. Unravelling such disease genes is crucial to fully understand the genetic landscape of diseases on molecular level. With the advent of ‘omic’ data era, network-based methods have prominently boosted disease gene discovery. However, how to make better use of different types of data for the prediction of disease genes remains a challenge.

Results

In this study, we improved the performance of disease gene prediction by integrating the similarity of disease phenotype, biological function and network topology. First, for each phenotype, a phenotype-specific network was specially constructed by mapping phenotype similarity information of given phenotype onto the protein-protein interaction (PPI) network. Then, we developed a gene gravity-like algorithm, to score candidate genes based on not only topological similarity but also functional similarity. We tested the proposed network and algorithm by conducting leave-one-out and leave-10%-out cross validation and compared them with state-of-art algorithms. The results showed a preference to phenotype-specific network as well as gene gravity-like algorithm. At last, we tested the predicting capacity of proposed algorithms by test gene set derived from the DisGeNET database. Also, potential disease genes of three polygenic diseases, obesity, prostate cancer and lung cancer, were predicted by proposed methods. We found that the predicted disease genes are highly consistent with literature and database evidence.

Conclusions

The good performance of phenotype-specific networks indicates that phenotype similarity information has positive effect on the prediction of disease genes. The proposed gene gravity-like algorithm outperforms the algorithm of Random Walk with Restart (RWR), implicating its predicting capacity by combing topological similarity with functional similarity. Our work will give an insight to the discovery of disease genes by fusing multiple similarities of genes and diseases.
  相似文献   

4.
目前,基于计算机数学方法对基因的功能注释已成为热点及挑战,其中以机器学习方法应用最为广泛。生物信息学家不断提出有效、快速、准确的机器学习方法用于基因功能的注释,极大促进了生物医学的发展。本文就关于机器学习方法在基因功能注释的应用与进展作一综述。主要介绍几种常用的方法,包括支持向量机、k近邻算法、决策树、随机森林、神经网络、马尔科夫随机场、logistic回归、聚类算法和贝叶斯分类器,并对目前机器学习方法应用于基因功能注释时如何选择数据源、如何改进算法以及如何提高预测性能上进行讨论。  相似文献   

5.
In this paper, we develop a machine learning system for determining gene functions from heterogeneous data sources using a Weighted Naive Bayesian network (WNB). The knowledge of gene functions is crucial for understanding many fundamental biological mechanisms such as regulatory pathways, cell cycles and diseases. Our major goal is to accurately infer functions of putative genes or Open Reading Frames (ORFs) from existing databases using computational methods. However, this task is intrinsically difficult since the underlying biological processes represent complex interactions of multiple entities. Therefore, many functional links would be missing when only one or two sources of data are used in the prediction. Our hypothesis is that integrating evidence from multiple and complementary sources could significantly improve the prediction accuracy. In this paper, our experimental results not only suggest that the above hypothesis is valid, but also provide guidelines for using the WNB system for data collection, training and predictions. The combined training data sets contain information from gene annotations, gene expressions, clustering outputs, keyword annotations, and sequence homology from public databases. The current system is trained and tested on the genes of budding yeast Saccharomyces cerevisiae. Our WNB model can also be used to analyze the contribution of each source of information toward the prediction performance through the weight training process. The contribution analysis could potentially lead to significant scientific discovery by facilitating the interpretation and understanding of the complex relationships between biological entities.  相似文献   

6.
7.
MOTIVATION: Logistic regression is a standard method for building prediction models for a binary outcome and has been extended for disease classification with microarray data by many authors. A feature (gene) selection step, however, must be added to penalized logistic modeling due to a large number of genes and a small number of subjects. Model selection for this two-step approach requires new statistical tools because prediction error estimation ignoring the feature selection step can be severely downward biased. Generic methods such as cross-validation and non-parametric bootstrap can be very ineffective due to the big variability in the prediction error estimate. RESULTS: We propose a parametric bootstrap model for more accurate estimation of the prediction error that is tailored to the microarray data by borrowing from the extensive research in identifying differentially expressed genes, especially the local false discovery rate. The proposed method provides guidance on the two critical issues in model selection: the number of genes to include in the model and the optimal shrinkage for the penalized logistic regression. We show that selecting more than 20 genes usually helps little in further reducing the prediction error. Application to Golub's leukemia data and our own cervical cancer data leads to highly accurate prediction models. AVAILABILITY: R library GeneLogit at http://geocities.com/jg_liao  相似文献   

8.
Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Cox''s proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by or . This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are initially sensitive to chemotherapy. Net-Cox toolbox is available at http://compbio.cs.umn.edu/Net-Cox/.  相似文献   

9.
Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.  相似文献   

10.
MOTIVATION: Mining the hereditary disease-genes from human genome is one of the most important tasks in bioinformatics research. A variety of sequence features and functional similarities between known human hereditary disease-genes and those not known to be involved in disease have been systematically examined and efficient classifiers have been constructed based on the identified common patterns. The availability of human genome-wide protein-protein interactions (PPIs) provides us with new opportunity for discovering hereditary disease-genes by topological features in PPIs network. RESULTS: This analysis reveals that the hereditary disease-genes ascertained from OMIM in the literature-curated (LC) PPIs network are characterized by a larger degree, tendency to interact with other disease-genes, more common neighbors and quick communication to each other whereas those properties could not be detected from the network identified from high-throughput yeast two-hybrid mapping approach (EXP) and predicted interactions (PDT) PPIs network. KNN classifier based on those features was created and on average gained overall prediction accuracy of 0.76 in cross-validation test. Then the classifier was applied to 5262 genes on human genome and predicted 178 novel disease-genes. Some of the predictions have been validated by biological experiments.  相似文献   

11.
AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests.  相似文献   

12.
To develop accurate prognostic models is one of the biggest challenges in “omics”-based cancer research. Here, we propose a novel computational method for identifying dysregulated gene subnetworks as biomarkers to predict cancer recurrence. Applying our method to the DNA methylome of endometrial cancer patients, we identified a subnetwork consisting of differentially methylated (DM) genes, and non-differentially methylated genes, termed Epigenetic Connectors (EC), that are topologically important for connecting the DM genes in a protein-protein interaction network. The ECs are statistically significantly enriched in well-known tumorgenesis and metastasis pathways, and include known epigenetic regulators. Importantly, combining the DMs and ECs as features using a novel random walk procedure, we constructed a support vector machine classifier that significantly improved the prediction accuracy of cancer recurrence and outperformed several alternative methods, demonstrating the effectiveness of our network-based approach.  相似文献   

13.
Since genetic alteration only accounts for 20%–30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs’ responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.  相似文献   

14.
Li W  Wang R  Yan Z  Bai L  Sun Z 《PloS one》2012,7(3):e33653
A considerable portion of patients with colorectal cancer have a high risk of disease recurrence after surgery. These patients can be identified by analyzing the expression profiles of signature genes in tumors. But there is no consensus on which genes should be used and the performance of specific set of signature genes varies greatly with different datasets, impeding their implementation in the routine clinical application. Instead of using individual genes, here we identified functional multi-gene modules with significant expression changes between recurrent and recurrence-free tumors, used them as the signatures for predicting colorectal cancer recurrence in multiple datasets that were collected independently and profiled on different microarray platforms. The multi-gene modules we identified have a significant enrichment of known genes and biological processes relevant to cancer development, including genes from the chemokine pathway. Most strikingly, they recruited a significant enrichment of somatic mutations found in colorectal cancer. These results confirmed the functional relevance of these modules for colorectal cancer development. Further, these functional modules from different datasets overlapped significantly. Finally, we demonstrated that, leveraging above information of these modules, our module based classifier avoided arbitrary fitting the classifier function and screening the signatures using the training data, and achieved more consistency in prognosis prediction across three independent datasets, which holds even using very small training sets of tumors.  相似文献   

15.
One of the most important goals of biological investigation is to uncover gene functional relations. In this study we propose a framework for extraction and integration of gene functional relations from diverse biological data sources, including gene expression data, biological literature and genomic sequence information. We introduce a two-layered Bayesian network approach to integrate relations from multiple sources into a genome-wide functional network. An experimental study was conducted on a test-bed of Arabidopsis thaliana. Evaluation of the integrated network demonstrated that relation integration could improve the reliability of relations by combining evidence from different data sources. Domain expert judgments on the gene functional clusters in the network confirmed the validity of our approach for relation integration and network inference.  相似文献   

16.
Micro array data provides information of expression levels of thousands of genes in a cell in a single experiment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. In our present study we have used the benchmark colon cancer data set for analysis. Feature selection is done using t‐statistic. Comparative study of class prediction accuracy of 3 different classifiers viz., support vector machine (SVM), neural nets and logistic regression was performed using the top 10 genes ranked by the t‐statistic. SVM turned out to be the best classifier for this dataset based on area under the receiver operating characteristic curve (AUC) and total accuracy. Logistic Regression ranks as the next best classifier followed by Multi Layer Perceptron (MLP). The top 10 genes selected by us for classification are all well documented for their variable expression in colon cancer. We conclude that SVM together with t-statistic based feature selection is an efficient and viable alternative to popular techniques.  相似文献   

17.
Establishing a functional network is invaluable to our understanding of gene function, pathways, and systems-level properties of an organism and can be a powerful resource in directing targeted experiments. In this study, we present a functional network for the laboratory mouse based on a Bayesian integration of diverse genetic and functional genomic data. The resulting network includes probabilistic functional linkages among 20,581 protein-coding genes. We show that this network can accurately predict novel functional assignments and network components and present experimental evidence for predictions related to Nanog homeobox (Nanog), a critical gene in mouse embryonic stem cell pluripotency. An analysis of the global topology of the mouse functional network reveals multiple biologically relevant systems-level features of the mouse proteome. Specifically, we identify the clustering coefficient as a critical characteristic of central modulators that affect diverse pathways as well as genes associated with different phenotype traits and diseases. In addition, a cross-species comparison of functional interactomes on a genomic scale revealed distinct functional characteristics of conserved neighborhoods as compared to subnetworks specific to higher organisms. Thus, our global functional network for the laboratory mouse provides the community with a key resource for discovering protein functions and novel pathway components as well as a tool for exploring systems-level topological and evolutionary features of cellular interactomes. To facilitate exploration of this network by the biomedical research community, we illustrate its application in function and disease gene discovery through an interactive, Web-based, publicly available interface at http://mouseNET.princeton.edu.  相似文献   

18.
One of the major breakthroughs in oncogenesis research in recent years is the discovery that, in most patients, oncogenic mutations are concentrated in a few core biological functional pathways. This discovery indicates that oncogenic mechanisms are highly related to the dynamics of biologic regulatory networks, which govern the behaviour of functional pathways. Here, we propose that oncogenic mutations found in different biological functional pathways are closely related to parameter sensitivity of the corresponding networks. To test this hypothesis, we focus on the DNA damage-induced apoptotic pathway—the most important safeguard against oncogenesis. We first built the regulatory network that governs the apoptosis pathway, and then translated the network into dynamics equations. Using sensitivity analysis of the network parameters and comparing the results with cancer gene mutation spectra, we found that parameters that significantly affect the bifurcation point correspond to high-frequency oncogenic mutations. This result shows that the position of the bifurcation point is a better measure of the functionality of a biological network than gene expression levels of certain key proteins. It further demonstrates the suitability of applying systems-level analysis to biological networks as opposed to studying genes or proteins in isolation.  相似文献   

19.
20.

Background

Many mathematical and statistical models and algorithms have been proposed to do biomarker identification in recent years. However, the biomarkers inferred from different datasets suffer a lack of reproducibilities due to the heterogeneity of the data generated from different platforms or laboratories. This motivates us to develop robust biomarker identification methods by integrating multiple datasets.

Methods

In this paper, we developed an integrative method for classification based on logistic regression. Different constant terms are set in the logistic regression model to measure the heterogeneity of the samples. By minimizing the differences of the constant terms within the same dataset, both the homogeneity within the same dataset and the heterogeneity in multiple datasets can be kept. The model is formulated as an optimization problem with a network penalty measuring the differences of the constant terms. The L1 penalty, elastic penalty and network related penalties are added to the objective function for the biomarker discovery purpose. Algorithms based on proximal Newton method are proposed to solve the optimization problem.

Results

We first applied the proposed method to the simulated datasets. Both the AUC of the prediction and the biomarker identification accuracy are improved. We then applied the method to two breast cancer gene expression datasets. By integrating both datasets, the prediction AUC is improved over directly merging the datasets and MetaLasso. And it’s comparable to the best AUC when doing biomarker identification in an individual dataset. The identified biomarkers using network related penalty for variables were further analyzed. Meaningful subnetworks enriched by breast cancer were identified.

Conclusion

A network-based integrative logistic regression model is proposed in the paper. It improves both the prediction and biomarker identification accuracy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号