首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current knowledge of plant virus diversity is biased towards agents of visible and economically important diseases. Less is known about viruses that have not caused major diseases in crops, or viruses from native vegetation, which are a reservoir of biodiversity that can contribute to viral emergence. Discovery of these plant viruses is hindered by the traditional approach of sampling individual symptomatic plants. Since many damaging plant viruses are transmitted by insect vectors, we have developed "vector-enabled metagenomics" (VEM) to investigate the diversity of plant viruses. VEM involves sampling of insect vectors (in this case, whiteflies) from plants, followed by purification of viral particles and metagenomic sequencing. The VEM approach exploits the natural ability of highly mobile adult whiteflies to integrate viruses from many plants over time and space, and leverages the capability of metagenomics for discovering novel viruses. This study utilized VEM to describe the DNA viral community from whiteflies (Bemisia tabaci) collected from two important agricultural regions in Florida, USA. VEM successfully characterized the active and abundant viruses that produce disease symptoms in crops, as well as the less abundant viruses infecting adjacent native vegetation. PCR assays designed from the metagenomic sequences enabled the complete sequencing of four novel begomovirus genome components, as well as the first discovery of plant virus satellites in North America. One of the novel begomoviruses was subsequently identified in symptomatic Chenopodium ambrosiodes from the same field site, validating VEM as an effective method for proactive monitoring of plant viruses without a priori knowledge of the pathogens. This study demonstrates the power of VEM for describing the circulating viral community in a given region, which will enhance our understanding of plant viral diversity, and facilitate emerging plant virus surveillance and management of viral diseases.  相似文献   

2.
病毒宏基因组学研究进展   总被引:1,自引:0,他引:1  
病毒宏基因组学是一种新的病毒组学研究手段,随着高通量测序技术的飞速发展,人们能够从环境中快速发现、鉴定病毒基因组的组成并研究其特征。在过去的十年里,研究者们运用病毒宏基因组学发现了许多新型病毒,增强了人们对不同环境中病毒组成、分布和多样性的了解。因此,病毒宏基因组学已成为清晰描绘各种特殊环境中病毒图谱、了解自然界中病毒分布动态的有效工具。本文主要从病毒宏基因组的概念、样品前处理和病毒总基因组提取方法、测序技术以及病毒宏基因组的应用和发展前景方面进行概述。  相似文献   

3.
4.
Discovery of new viruses has been boosted by novel deep sequencing technologies. Currently, many viruses can be identified by sequencing without knowledge of the pathogenicity of the virus. However, attributing the presence of a virus in patient material to a disease in the patient can be a challenge. One approach to meet this challenge is identification of viral sequences based on enrichment by autologous patient antibody capture. This method facilitates identification of viruses that have provoked an immune response within the patient and may increase the sensitivity of the current virus discovery techniques. To demonstrate the utility of this method, virus discovery deep sequencing (VIDISCA-454) was performed on clinical samples from 19 patients: 13 with a known respiratory viral infection and 6 with a known gastrointestinal viral infection. Patient sera was collected from one to several months after the acute infection phase. Input and antibody capture material was sequenced and enrichment was assessed. In 18 of the 19 patients, viral reads from immunogenic viruses were enriched by antibody capture (ranging between 1.5x to 343x in respiratory material, and 1.4x to 53x in stool). Enriched reads were also determined in an identity independent manner by using a novel algorithm Xcompare. In 16 of the 19 patients, 21% to 100% of the enriched reads were derived from infecting viruses. In conclusion, the technique provides a novel approach to specifically identify immunogenic viral sequences among the bulk of sequences which are usually encountered during virus discovery metagenomics.  相似文献   

5.
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.  相似文献   

6.
Pathogen surveillance in animals does not provide a sufficient level of vigilance because it is generally confined to surveillance of pathogens with known economic impact in domestic animals and practically nonexistent in wildlife species. As most (re-)emerging viral infections originate from animal sources, it is important to obtain insight into viral pathogens present in the wildlife reservoir from a public health perspective. When monitoring living, free-ranging wildlife for viruses, sample collection can be challenging and availability of nucleic acids isolated from samples is often limited. The development of viral metagenomics platforms allows a more comprehensive inventory of viruses present in wildlife. We report a metagenomic viral survey of the Western Arctic herd of barren ground caribou (Rangifer tarandus granti) in Alaska, USA. The presence of mammalian viruses in eye and nose swabs of 39 free-ranging caribou was investigated by random amplification combined with a metagenomic analysis approach that applied exhaustive iterative assembly of sequencing results to define taxonomic units of each metagenome. Through homology search methods we identified the presence of several mammalian viruses, including different papillomaviruses, a novel parvovirus, polyomavirus, and a virus that potentially represents a member of a novel genus in the family Coronaviridae.  相似文献   

7.
中国部分地区蝙蝠携带病毒的宏基因组学分析   总被引:2,自引:0,他引:2  
蝙蝠携带有60多种病毒,其中许多对人有高度致病性.为了解中国蝙蝠携带病毒的自然本底、蝙蝠病毒的多样性和挖掘潜在的病毒病原,通过基于Solexa高通量测序的病毒宏基因组学技术对从吉林、云南、湖南采集的蝙蝠组织进行病毒组学研究,获得了11 644 232条读长(Reads),并拼接出44 872条重叠序列(Contig).通过核酸序列注释发现,其中8.2%(4 002/44 872)的重叠序列与病毒相关,能进一步注释到36个病毒科,包括19种脊椎动物病毒、6种植物病毒、4种昆虫病毒和4种噬菌体.通过对重叠序列的遗传进化分析、多序列比对显示,被注释为细小病毒、腺联病毒、博卡病毒、腺病毒、小双节RNA病毒等的重叠序列与已知病毒相似,部分序列却又呈现出明显的序列差异.通过对腺病毒和博卡病毒进一步的PCR扩增证实了此研究方法可靠.旨在了解我国蝙蝠携带病毒组的构成,对建立高效的野生动物源人兽共患病的监测方法提供参考.  相似文献   

8.
基因组学技术, 特别是宏基因组测序在未知病毒的鉴定与溯源中起到了重要作用。相较于传统的病毒分离培养方法, 宏基因组技术可以从混合样本中获得病毒的核酸序列, 极大加速了未知病毒的鉴定与溯源, 在针对高流行性、高致病性的病毒研究中发挥了重要作用。基于宏基因组技术对未知病毒进行鉴定和溯源, 其准确性很大程度上依赖于取样及已知宿主的病毒库的完整性。然而, 当前病毒多样性的基础研究相对薄弱, 病毒的宿主信息则更加匮乏。野生动物和畜禽是人畜共患病致病病毒的重要中间宿主, 构建广泛的动物-病毒关联数据库对于准确、快速地鉴定和预防致病性病毒具有重要意义。本综述以SARS-CoV-2为例, 总结了基因组学技术在病毒的鉴定与溯源上的应用, 并针对当前动物病毒库完整性低的现状, 对构建野生和家养动物携带病毒的关联数据库的可行性提出依据与建议。  相似文献   

9.
Viral discovery and sequence recovery using DNA microarrays   总被引:12,自引:1,他引:11       下载免费PDF全文
Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.  相似文献   

10.
A novel, unbiased approach to plant viral disease diagnosis has been developed which requires no a priori knowledge of the host or pathogen. Next-generation sequencing coupled with metagenomic analysis was used to produce large quantities of cDNA sequence in a model system of tomato infected with Pepino mosaic virus . The method was then applied to a sample of Gomphrena globosa infected with an unknown pathogen originally isolated from the flowering plant Liatris spicata . This plant was found to contain a new cucumovirus, for which we suggest the name 'Gayfeather mild mottle virus'. In both cases, the full viral genome was sequenced. This method expedites the entire process of novel virus discovery, identification, viral genome sequencing and, subsequently, the development of more routine assays for new viral pathogens.  相似文献   

11.
ABSTRACT: BACKGROUND: As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. RESULTS: Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C--like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. CONCLUSIONS: Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.  相似文献   

12.
《Trends in plant science》2023,28(3):297-311
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.  相似文献   

13.
Animal host–microbe interactions are a relevant concern for wildlife conservation, particularly regarding generalist pathogens, where domestic host species can play a role in the transmission of infectious agents, such as viruses, to wild animals. Knowledge on viral circulation in wild host species is still scarce and can be improved by the recent advent of modern molecular approaches. We aimed to characterize the fecal virome and identify viruses of potential conservation relevance of diarrheic free‐ranging wolves and sympatric domestic dogs from Central Portugal, where a small and threatened wolf population persists in a highly anthropogenically modified landscape. Using viral metagenomics, we screened diarrheic stools collected from wolves (n = 8), feral dogs (n = 4), and pet dogs (n = 6), all collected within wolf range. We detected novel highly divergent viruses as well as known viral pathogens with established effects on population dynamics, including canine distemper virus, a novel bocavirus, and canine minute virus. Furthermore, we performed a 4‐year survey for the six wolf packs comprising this endangered wolf population, screening 93 fecal samples from 36 genetically identified wolves for canine distemper virus and the novel bocavirus, previously identified using our metagenomics approach. Our novel approach using metagenomics for viral screening in noninvasive samples of wolves and dogs has profound implications on the knowledge of both virology and wildlife diseases, establishing a complementary tool to traditional screening methods for the conservation of threatened species.  相似文献   

14.
The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.  相似文献   

15.
Fan L  McElroy K  Thomas T 《PloS one》2012,7(6):e39948
Direct sequencing of environmental DNA (metagenomics) has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.  相似文献   

16.
The metagenomics approach has revolutionised the fields of bacterial diversity, ecology and evolution, as well as derived applications like bioremediation and obtaining bioproducts. A further associated conceptual change has also occurred since in the metagenomics methodology the species is no longer the unit of study, but rather partial genome arrangements or even isolated genes. In spite of this, concepts coming from ecological and evolutionary fields traditionally centred on the species, like the concept of niche, are still being applied without further revision. A reformulation of the niche concept is necessary to deal with the new operative and epistemological challenges posed by the metagenomics approach. To contribute to this end, I review past and present uses of the niche concept in ecology and in microbiological studies, showing that a new, updated definition need to be used in the context of the metagenomics. Finally, I give some insights into a more adequate conceptual background for the utilisation of the niche concept in metagenomic studies. In particular, I raise the necessity of including the microbial genetic background as another variable into the niche space. Diana Marco is a member of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).  相似文献   

17.
Biotechnological prospects from metagenomics   总被引:32,自引:0,他引:32  
The recognition that most microorganisms in the environment cannot be cultured by standard methods stimulated the development of metagenomics, which is the genomic analysis of uncultured microorganisms. Two types of analysis have been used to obtain information from metagenomic libraries: a function-driven approach, in which metagenomic libraries are initially screened for an expressed trait, and a sequence-driven approach, in which libraries are initially screened for particular DNA sequences. New antibiotics and enzymes are among the early discoveries from metagenomics. Future refinement of methods that enrich for genes of particular function will accelerate the rate of discovery of useful molecules.  相似文献   

18.
In the past few years, the field of metagenomics has been growing at an accelerated pace, particularly in response to advancements in new sequencing technologies. The large volume of sequence data from novel organisms generated by metagenomic projects has triggered the development of specialized databases and tools focused on particular groups of organisms or data types. Here we describe a pipeline for the functional annotation of viral metagenomic sequence data. The Viral MetaGenome Annotation Pipeline (VMGAP) pipeline takes advantage of a number of specialized databases, such as collections of mobile genetic elements and environmental metagenomes to improve the classification and functional prediction of viral gene products. The pipeline assigns a functional term to each predicted protein sequence following a suite of comprehensive analyses whose results are ranked according to a priority rules hierarchy. Additional annotation is provided in the form of enzyme commission (EC) numbers, GO/MeGO terms and Hidden Markov Models together with supporting evidence.  相似文献   

19.
Bats are reservoir animals harboring many important pathogenic viruses and with the capability of transmitting these to humans and other animals. To establish an effective surveillance to monitor transboundary spread of bat viruses between Myanmar and China, complete organs from the thorax and abdomen from 853 bats of six species from two Myanmar counties close to Yunnan province, China, were collected and tested for their virome through metagenomics by Solexa sequencing and bioinformatic analysis. In total, 3,742,314 reads of 114 bases were generated, and over 86% were assembled into 1,649,512 contigs with an average length of 114 bp, of which 26,698 (2%) contigs were recognizable viral sequences belonging to 24 viral families. Of the viral contigs 45% (12,086/26,698) were related to vertebrate viruses, 28% (7,443/26,698) to insect viruses, 27% (7,074/26,698) to phages and 95 contigs to plant viruses. The metagenomic results were confirmed by PCR of selected viruses in all bat samples followed by phylogenetic analysis, which has led to the discovery of some novel bat viruses of the genera Mamastrovirus, Bocavirus, Circovirus, Iflavirus and Orthohepadnavirus and to their prevalence rates in two bat species. In conclusion, the present study aims to present the bat virome in Myanmar, and the results obtained further expand the spectrum of viruses harbored by bats.  相似文献   

20.
宏基因组学是基因工程发展的新方向,它为寻找和发现新的功能基因及生物催化剂提供了新的研究策略。着重论述了宏基因组学的研究方法,包括DNA的提取、文库的构建以及筛选策略的选择。同时介绍了近年来宏基因组学应用于新型生物催化剂开发中所取得的一些成果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号