首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the contribution of amino acid residues to the thermostability of phospholipase D (PLD), a chimeric form of two Streptomyces PLDs (thermolabile K1PLD and thermostable TH-2PLD) was constructed. K/T/KPLD, in which residues 329–441 of K1PLD were recombined with the homologous region of TH-2PLD, showed a thermostability midway between those of K1PLD and TH-2PLD. By comparing the primary structures of Streptomyces PLDs, the seven candidates of thermostability-related amino acid residues of K1PLD were identified. The K1E346DPLD mutant, in which Glu346 of K1PLD was substituted with Asp by site-directed mutagenesis, exhibited enhanced thermostability, which was almost the same as that of TH-2PLD.  相似文献   

2.
Four phospholipases D (PLDs) in the culture supernatants from Streptomyces strains were purified to conduct a comparative study of their thermostabilities. Among the four purified PLDs, the enzyme from Streptomyces halstedii K1 lost its activity at 45 degrees C. PLD from Streptomyces septatus TH-2 was stable at the same temperature. We determined the nucleotide sequence encoding the PLD gene from S. halstedii K1 (K1PLD). The deduced amino acid sequence showed high homology to that of the PLD gene from S. septatus TH-2 (TH-2PLD). By comparison of the optimum temperature and the thermostability among recombinant PLDs, K1PLD, TH-2PLD and T/KPLD that possessed the N-terminus of TH-2PLD and the C-terminus of K1PLD, T/KPLD showed the properties midway between those of K1PLD and TH-2PLD. It was suggested that the 176 amino acids at C-terminus of Streptomyces PLD were important for its thermostability.  相似文献   

3.
A mutant subtilisin E with enhanced thermostability   总被引:1,自引:0,他引:1  
A mutant subtilisin E with remarkably thermostability is reported. It is more active against the typical substrate s-AAPF-pna than the wild-type subtilisin E. The time required for getting 50% residual activity of Ser236Cys subtilisin E at 60 °C in aqueous solution was approximately 80 min which is 4 times longer than that of wild-type subtilisin E. Similar to the wild-type subtilisin E, the amidase activity of Ser236Cys subtilisin E is dramatically reduced in the presence of dimethylformamide (DMF).  相似文献   

4.
With the aim of isolating economically viable enzymes from a microbial source, a novel phospholipase D (PLD) was purified from Streptomyces sp. CS684 (PLD(684)). PLD(684) had molecular weight of 29 kDa, which makes it the second smallest PLD reported so far. The enzyme activity was optimum at pH 6 and 45 degrees C, and enhanced by various detergents. It was stable from pH 7 to 9 and at or below 45 degrees C when assayed after 40 h and 2h, respectively. The K(m) and V(max) values for phosphatidylcholine were 1.16 mM and 1453.74 micromol min(-1)mg(-1), respectively. It catalyzed the transphosphatidylation of glycerol, but not that of l-serine, myo-inositol or ethanolamine. Low molecular weight PLD(684) with transphosphatidylation activity may be utilized in the industrial production of rare and commercially important phospholipids.  相似文献   

5.
Purified extracelluar glucoamylase from Arachniotus sp. was used for kinetic and thermodynamic characterization. Thermal inactivation followed first order kinetics. The denaturation/activation energies of enzyme were 57 and 89 kJ mol–1, respectively. Both enthalpy and entropy of activation for inactivation were lower than those for glucoamylases reported in literature. It is suggested that the enzyme is highly thermostable and is suitable for industrial applications.  相似文献   

6.
To isolate thermostability-related amino acid residues of Streptomyces phospholipase D (PLD), we constructed a chimeral genes library between two highly homologous plds, which exhibited different thermostabilities, by an in vivo DNA shuffling method using Escherichia coli that has a mutation of a single-stranded DNA-binding protein gene. To confirm the location of the recombination site, we carried out the restriction mapping of 68 chimeral pld genes. The recombination sites were widely dispersed over the entire pld sequence. Moreover, we examined six chimeral PLDs by comparing their thermostabilities with those of parental PLDs. To identify a thermostability-related amino acid residue, we investigated the thermostability of chimera C that was the most thermolabile among the six chimeras. We identified the thermostability-related factor Gly-188, which is located in the alpha-7 helix of PLD from Streptomyces septatus TH-2 (TH-2PLD). TH-2PLD mutants, in which Gly-188 was substituted with Phe, Val or Trp, exhibited higher thermostabilities than that of the parental PLD. Gly-188 substituted with the Phe mutant, which was the most stable among the mutants, showed an enzyme activity almost the same as that of TH-2PLD as determine by kinetic analysis.  相似文献   

7.
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.  相似文献   

8.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   

9.
Transglutaminase (TGase) is an important industrial enzyme that catalyzes the cross-linking of proteins. In this study, the N-terminal residues were deleted and substituted to improve the activity and thermostability of Streptomyces hygroscopicus TGase. Seven N-terminal residues of TGase were chosen to be deleted individually. The mutated TGase missing the first four residues showed an increase in specific activity of 32.92%. The fifth residue (E5) in the N-terminus was then selected for substitution with the 19 other amino acids. The mutant replacing the fifth residue with an aspartic acid exhibited a 1.85-fold higher specific activity and a 2.7-fold longer half-life at 50 °C when compared with the wild-type enzyme. The melting temperature of the mutated TGase increased from 68.9 to 79.1 °C by circular dichroism spectroscopy analysis. This study showed that substitution combined with deletion of the N-terminal amino acids could enhance the activity and thermostability of TGase.  相似文献   

10.
The automated docking program AutoDock was used to dock nine phosphatidic acids (PAs), six phosphatidylcholines, five phosphatidylethanolamines, four phosphatidylglycerols, one phosphatidylinositol and two phosphatidylserines, which have two identical saturated fatty acid residues with an even numbers of carbon atoms, onto the active site of Streptomyces sp. PMF phospholipase D (PLD). Two PAs with one double bond on the fatty acid chain linked to the C2 of the glycerol residue were also docked. In general, binding energies become progressively more negative as fatty acid residues become longer. When these residues are of sufficient length, one is coiled against a hydrophobic cliff in a well that also holds the glycerol and phosphate residues and the head group, while the other generally is bound by a hydrophobic surface outside the well. Phosphatidylcholines have the only head group that is firmly bound by the active site, giving a possible structural explanation for the low selectivity of Streptomyces PLD for other phospholipid substrates.  相似文献   

11.
Uhm TB  Lee SH 《Biotechnology letters》2003,25(11):883-886
By examining the conserved regions in the protein sequences of eight different Streptomyces phospholipase Ds (PLD) reported so far and the X-ray crystallographic structure of a Streptomyces PLD, we designed a peptide sequence, DPANRGAVGSGGYSQIKSL, for the screening of microorganisms producing PLD. In the enzyme-linked immunosorbent assay using a mouse antibody raised against the designed peptide, we recovered seven producing strains out of 128 soil isolates.  相似文献   

12.
1. Phospholipase D [EC 3.1.4.4] from Streptomyces hachijoensis was purified about 570-fold by column chromatography on DEAE-cellulose and Sephadex G-50 followed by isoelectric focusing. 2. The purified preparation was found to be homogeneous both by immunodiffusion and polyacrylamide disc gel electrophoresis. 3. The isoelectric point was found to be around pH 8.6 and the molecular weight was about 16,000. 4. The enzyme has maximal activity at pH 7.5 at 37 degrees. The optimal temperature is around 50 degrees at pH 7.5, using 20 min incubation. 5. The enzyme was stable at 50 degrees for 90 min. At neutral pH, between 6 and 8, the enzyme retained more than 95% of its activity on 24 hr incubation at 25 degrees. However, the enzyme lost 80% of its activity under the same conditions at pH 4.0. 6. The enzyme was stimulated slightly by Ca2+, Mn2+, and Co2+, and significantly by Triton X-100 and ethyl ether. It was inhibited by Sn2+, Fe2+, Fe3+, Al3+, EDTA, sodium dodecyl sulfate, sodium cholate, and cetylpyridinium chloride. 7. This phospholipase D hydrolyzes phosphatidylethanolamine, phosphatidylcholine, cardiolipin, sphingomyelin, phosphatidylserine, and lysophosphatidylcholine, liberating the corresponding bases. 8. The Km value was 4mM, determined with phosphatidylethanolamine as a substrate.  相似文献   

13.
An enzyme with phospholipase D activity was purified to homogeneity from a new strain of Streptomyces. The molecular mass, assessed by electrospray mass spectrometry, was 52672 Da and the isoelectric point 9.2. The enzyme, which had pH optimum between 4 and 7, showed satisfactory stability and transphosphatidylation activity.  相似文献   

14.
The phospholipase D from Streptomyces chromofuscus (PLDSc) is a soluble enzyme that interacts with membranes to catalyse phosphatidylcholine (PC) transformation. In this work, we focused on the interaction between PLDSc and two lipid activators: a neutral lipid, diacylglycerol (DAG), and an anionic one, phosphatidic acid (PA). DAG is a naturally occurring alcohol, so it is a potent nucleophile for the transphosphatidylation reaction catalysed by PLD. Concerning PA, it is a widely described activator of PLDSc-catalysed hydrolysis of PC. The monolayer technique allowed us to define PLDSc interaction with DAG and PA. In the case of DAG, the results suggest an insertion of PLDSc within the acyl chains of the lipid with an exclusion pressure of approximately 45 mN/m. PLDSc-DAG interaction seemed to occur preferentially with the lipid in the liquid-expanded (LE) phase. PLDSc interaction with PA was found to be more effective at high surface pressures. The overall results obtained with PA show a preferential interaction of the protein with condensed PA domains. No exclusion pressure could be found for PLDSc-PA interaction indicating only superficial interaction with the polar head of this lipid. Brewster angle microscopy (BAM) images were acquired in order to confirm these results and to visualise the patterns induced by PLDSc adsorption.  相似文献   

15.
Two phospholipase D (PLD) enzymes with both hydrolase and transferase activities were isolated from Streptomyces chromofuscus. There were substantial differences in the kinetic properties of the two PLD enzymes towards monomeric, micellar, and vesicle substrates. The most striking difference was that the higher molecular weight enzyme (PLD57 approximately 57 kDa) could be activated allosterically with a low mole fraction of phosphatidic acid (PA) incorporated into a PC bilayer (Geng et al., J. Biol. Chem. 273 (1998) 12195-12202). PLD42/20, a tightly associated complex of two peptides, one of 42 kDa and the other 20 kDa, had a 4-6-fold higher Vmax toward PC substrates than PLD57 and was not activated by PA. N-Terminal sequencing of both enzymes indicated that both components of PLD42/20 were cleavage products of PLD57. The larger component included the N-terminal segment of PLD57 and contained the active site. The N-terminus of the smaller peptide corresponded to the C-terminal region of PLD57; this peptide had no PLD activity by itself. Increasing the pH of PLD42/20 to 8.9, followed by chromatography of PLD42/20 on a HiTrap Q column at pH 8.5 separated the 42- and 20-kDa proteins. The 42-kDa complex had about the same specific activity with or without the 20-kDa fragment. The lack of PA activation for the 42-kDa protein and for PLD42/20 indicates that an intact C-terminal region of PLD57 is necessary for activation by PA. Furthermore, the mechanism for transmission of the allosteric signal requires an intact PLD57.  相似文献   

16.
A simple method for the preparation of homogeneous molecular species of plasmenylcholine and plasmenylethanolamine was developed. The method utilized reverse phase high performance liquid chromatography to isolate homogeneous molecular species of plasmenylcholine prepared by acylation of lysoplasmenylcholine. Plasmenylcholine was directly converted to plasmenylethanolamine by transphosphatidylation utilizing phospholipase D from Streptomyces chromofuscus. This method permits the facile labeling of homogeneous molecular species of plasmalogens in the polar head group, the sn-2 acyl chain, or both, for the first time.  相似文献   

17.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

18.
Self-assembling protein templates have enormous potential as biomaterials for the fabrication of multifunctional nanostructures that require precise positioning of individual molecules in regular patterns over large surface areas. Furthermore, the development of protein templates that are stable under extreme conditions of heat or chemical denaturants will expand processing conditions and end-use applications for biomaterials that require exceptional stability and robustness. In the present work, we characterized the high thermal stability of a filamentous protein template, the γ-prefoldin (γPFD) from the hyperthermophile Methanocaldococcus jannaschii, and subsequently used rational design to further enhance the filament's thermal stability for application as a biotemplate in the creation of platinum nanowires. The γPFD assembles into long fibers with lengths that exceed 2 μm, which when heated to various temperatures and examined by transmission electron microscopy, revealed a Tm of 93°C for the quaternary filament structure. Subsequently, we increased the hydrophobicity of the α-helices of the γPFD's coiled-coil, which appeared to strengthen the filamentous structure, leading to filaments of greater length at elevated temperatures. These enhanced filaments functioned as templates for the synthesis of platinum nanowires at unprecedented temperatures, and may create new opportunities for other applications of nanoscale biotemplates that require exceptional thermal stability. See accompanying commentary by Jonathan S. Dordick DOI: 10.1002/biot.201200338  相似文献   

19.
The role of residue 219 in the physicochemical properties of d-glucose isomerase from Streptomyces sp. SK strain (SKGI) was investigated by site-directed mutagenesis and structural studies. Mutants G219A, G219N, and G219F were generated and characterized. Comparative studies of their physicochemical properties with those of the wild-type enzyme highlighted that mutant G219A displayed increased specific activity and thermal stability compared to that of the wild-type enzyme, while for G219N and G219F, these properties were considerably decreased. A double mutant, SKGI F53L/G219A, displayed a higher optimal temperature and a higher catalytic efficiency than both the G219A mutant and the wild-type enzyme and showed a half-life time of about 150 min at 85 °C as compared to 50 min for wild-type SKGI. Crystal structures of SKGI wild-type and G219A enzymes were solved to 1.73 and 2.15 Å, respectively, and showed that the polypeptide chain folds into two structural domains. The larger domain consists of a (β/α)8 unit, and the smaller domain forms a loop of α helices. Detailed analyses of the three-dimensional structures highlighted minor but important changes in the active site region as compared to that of the wild-type enzyme leading to a displacement of both metal ions, and in particular that in site M2. The structural analyses moreover revealed how the substitution of G219 by an alanine plays a crucial role in improving the thermostability of the mutant enzyme.  相似文献   

20.
Exocellular chitinase from a Streptomyces sp   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号