首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Misaka S  Sato H  Aoki Y  Mizumoto T  Onoue S  Yamada S 《Peptides》2011,32(2):401-407
Vasoactive intestinal peptide (VIP) has been thought to be a promising candidate for asthma/chronic obstructive pulmonary disease (COPD), and our group previously developed several long-lasting VIP derivatives. The objective of the present study was to clarify the therapeutic potential of new VIP derivatives with improved chemical and metabolic stability. Exposure of rat alveolar L2 cells to cigarette smoke extract (CSE) for 1 h led to release of lactate dehydrogenase (LDH) and decreased viability in a CSE concentration-dependent manner. There appeared to be marked induction of apoptosis after CSE exposure, as demonstrated by 59% elevation of caspase-3 activity and TUNEL staining. In contrast, a stabilized VIP derivative, [R15,20,21, L17]-VIP-GRR (IK312532), at a concentration of 10−7 M, exhibited 71% attenuation of LDH release and 85% decrease of the number of apoptotic cells. In addition to IK312532, new VIP derivatives also showed anti-apoptotic effects against CSE toxicity and marked reduction of nitric oxide production. In terms of cytoprotective effects, [R15,20,21, L17, A24,25, des-N28]-VIP-GRR was more effective than VIP and IK312532, possibly due to the improved stability. Thus, the present study is the first to demonstrate that novel stabilized VIP derivatives exert anti-apoptotic and cytoprotective effects on CSE-induced cytotoxicity.  相似文献   

2.
Chronic obstructive pulmonary disease is a major clinical disorder usually associated with cigarette smoking. A central feature of chronic obstructive pulmonary disease is inflammation coexisting with an abnormal protease/antiprotease balance, leading to apoptosis and elastolysis. In an in vitro study of rat lung alveolar L2 cells, cigarette smoke extract (CSE) induced apoptotic cell death. Exposure of L2 cells to CSE at a concentration of 0.25% resulted in a 50% increase of caspase-3 and matrix metalloproteinase (MMP) activities. Specific inhibitors for caspases and MMPs attenuated the cytotoxicity of CSE. RT-PCR amplification identified VPAC2 receptors in L2 cells. A radioligand-binding assay with (125)I-labeled vasoactive intestinal peptide (VIP) found high affinity and saturable (125)I-labeled VIP-binding sites in L2 cells. VIP and pituitary adenylate cyclase-activating polypeptide (PACAP27) were approximately equipotent for both VIP receptor binding and stimulation of cAMP production in L2 cells. Both neuropeptides, at concentrations higher than 10(-13) m, produced a concentration-dependent inhibition of CSE-induced cell death in L2 cells. VIP, at 10(-7) m, reduced CSE-stimulated MMP activity and caspase-3 activation. The present study has shown that VIP and PACAP27 significantly attenuate the cytotoxicity of CSE through the activation of VPAC2 receptor, and the protective effect of VIP may partly be the result of a reduction in the CSE-induced stimulation of MMPs and caspases.  相似文献   

3.
The present study was undertaken to develop a respirable sustained-release powder (RP) formulation of long-acting VIP derivative, [Arg(15, 20, 21), Leu(17)]-VIP-GRR (IK312532), using PLGA nanospheres (NS) with the aim of improving the duration of action. NS formulation of IK312532 (IK312532/NS) was prepared by an emulsion solvent diffusion method in oil, and a mixture of the IK312532/NS and erythritol was jet-milled and mixed with lactose carrier to obtain the IK312532/NS-RP. Physicochemical properties were characterized focusing on appearance, particle size, and drug release, and in vivo pharmacological effects were assessed in antigen-sensitized rats. The IK312532/NS with a diameter of 140 nm showed a biphasic release pattern in distilled water with ca. 20% initial burst for 30 min and a sustained slow release up to ca. 55% for 24h. Laser diffraction analysis demonstrated that IK312532/NS-RP had fine dispersibility and suitable particle size for inhalation. In antigen-sensitized rats, insufflated IK312532/NS-RP (10 μg of IK312532/rat) could suppress increases of granulocyte recruitment and myeloperoxidase in pulmonary tissue for up to 24h after antigen challenge, although IK312532-RP at the same dose was less effective with limited duration of action. From these findings, newly prepared IK312532/NS-RP might be of clinical importance in improving duration of action and medication compliance for treatment of airway inflammatory diseases.  相似文献   

4.
A novel VIP derivative, [R15, 20, 21, L17]-VIP-GRR (IK312532), relaxed potently the carbachol-induced contraction of guinea-pig isolated trachea with longer duration than that induced by VIP. IK312532 competed with [125I]VIP for the binding sites in the rat lung in a concentration-dependent manner. There was considerable decrease in specific [125I]VIP binding in each lobe of right and left lung 0.5 h after the intratracheal administration of IK312532 (50 microg/rat) as dry powder inhaler (DPI). Rosenthal analysis revealed that the administration of IK312532 (50 and 100 microg/rat)-DPI brought about a significant decrease of maximal number of binding sites (Bmax) for specific [125I]VIP binding in anterior and posterior lobes of rat right lung, suggesting a significant occupancy of lung VIP receptors. This effect by IK312532 in the posterior lobe of the right lung was dose-dependent and lasted until at least 2 h after the intratracheal administration. Furthermore, the antigen-evoked infiltration of granulocytes in the rat bronchiolar mucosa was markedly suppressed by the intratracheal administration of IK312532 (50 microg/rat)-DPI. In conclusion, the present study has shown that IK312532 exhibits long-lasting relaxation of tracheal smooth muscles and that the intratracheal administration of this peptide exerts a significant occupancy of lung VIP receptors as well as a suppression of the antigen-evoked infiltration of granulocytes in the bronchiolar mucosa. Thus, the formulation of IK312532 as DPI may be a pharmacologically useful drug delivery system for the therapy of pulmonary diseases such as asthma.  相似文献   

5.
Vasoactive intestinal peptide (VIP) exerts a relaxing action on tracheal smooth muscle which is mediated through interaction with VIP receptors. The deficiency of VIP in the airways has been implicated in the pathogenesis of asthma. Thus, the administration of VIP may be useful for the therapy of pulmonary diseases. However, the therapeutic application of VIP is largely limited by its rapid degradation in addition to the systemic adverse effects due to the wide distribution of VIP receptors. To overcome these problems, we succeeded to synthesize a novel VIP derivative of VIP, [R15, 20, 21, L17]-VIP-GRR (IK312532), and to prepare its dry powder for the topical administration to the lung. The physicochemical properties of dry powder were evaluated by laser diffraction and cascade impactor. The laser diffraction analysis indicated that the carrier and fine particles had median diameter of 65.6 and 4.5 microm, respectively, and the air flow at the pressure of 0.15 MPa or higher resulted in the high dispersion and significant separation of fine particle containing peptide from the carrier molecule. The cascade impactor analysis clearly showed the high emission of dry powder from capsule and the deposition of peptide on stages 3 of the cascade impactor. The intratracheal administration of dry powder inhaler (DPI) of VIP or IK312532 brought about a significant decrease of maximal number of binding sites (Bmax) for [125I]VIP in anterior and posterior lobes of rat right lung, suggesting a significant occupancy of lung VIP receptors. This effect by IK312532-DPI compared with VIP-DPI lasted for a longer period. Thus, IK312532-DPI may be a pharmacologically useful drug delivery system for the VIP therapy of pulmonary diseases such as asthma.  相似文献   

6.
Onoue S  Yamada S  Yajima T 《Peptides》2007,28(9):1640-1650
Vasoactive intestinal peptide (VIP) is one of the major peptide transmitters in the central and peripheral nervous systems, being involved in a wide range of biological functions. In an airway system where VIP-immunoreactive nerve fibers are present, VIP acts as neurotransmitter or neuromodulator of the inhibitory non-adrenergic and non-cholinergic airway nervous system and influences many aspects of pulmonary biology. A clinical application of VIP has been believed to offer potential benefits in the treatment of chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, its clinical application has been limited in the past for a number of reasons, including its extremely short plasma half-life after intravenous administration and difficulty in administration routes. The development of long-acting VIP analogues, in combination with appropriate drug delivery systems, may provide clinically useful agents for the treatment of asthma/COPD. In this review, development of efficacious VIP derivatives, drug delivery systems designed for VIPs and the potential application for asthma/COPD are discussed. We also include original data from our chemical modification experiments and formulation studies, which led to successful development of [R(15, 20, 21), L(17)]-VIP-GRR (IK312532), a potent VIP analogue, and a VIPs-based dry powder inhaler system.  相似文献   

7.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

8.
9.
The neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are implicated in the regulation of gene expression and hormone secretion in mammalian melanotrope cells and a mammalian pro-opiomelanocortin (POMC)-producing tumor cell line, but the physiological relevance of this regulation is elusive. The purpose of the present study was to establish if these peptides affect biosynthetic and secretory processes in a well-established physiological model for endocrine cell functioning, the pituitary melanotrope cells of the amphibian Xenopus laevis, which hormonally control the process of skin color adaptation to background illumination. We show that both PACAP and VIP are capable of stimulating the secretory process of the Xenopus melanotrope cell. As the peptides are equipotent, they may exert their actions via a VPAC receptor. Moreover, PACAP stimulated POMC biosynthesis and POMC gene expression. Strong anti-PACAP immunoreactivity was found in the pituitary pars nervosa (PN), suggesting that this neurohemal organ is a source of neurohormonal PACAP action on the melanotropes in the intermediate pituitary. We propose that the PACAP/VIP family of peptides has a physiological function in regulating Xenopus melanotrope cell activity during the process of skin color adaptation.  相似文献   

10.
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp2]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.  相似文献   

11.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a bioactive peptide isolated from ovine hypothalamus. It has been demonstrated to be transiently expressed in preovulatory follicles and to positively affect several parameters correlated with the ovulatory process. The aim of the present study was to investigate whether PACAP influences the plasminogen/plasmin system in rat ovary. Plasminogen activators (PAs) are serine proteases, modulated by gonadotropins and several peptides in preovulatory follicles, that appear to be involved in ovulation. Granulosa cells obtained from immature eCG-treated rats were cultured for 24 h in the presence of increasing concentrations of PACAP and vasoactive intestinal peptide (VIP). A significant, dose-dependent increase in tissue-type PA (tPA) activity and decrease in urokinase-type (uPA) PA activity were observed in PACAP-treated cells. These effects were exerted at the mRNA level. The use of cycloheximide, a protein synthesis inhibitor, suggested that PACAP requires an intermediary protein to decrease uPA-mRNA, but not to induce tPA-mRNA. However, no significant modulation of PAs was observed in the presence of VIP. When granulosa cells were stimulated within the intact follicle (i.e., maintaining the three-dimensional structure and in the presence of the theca cell layers), both PACAP and VIP dose-dependently stimulated tPA. These data suggest that, in addition to the PACAP type I receptor present on granulosa cells, different subtypes of PACAP receptors are present in the different ovarian compartments.  相似文献   

12.
Intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide-38 (PACAP) or vasoactive intestinal peptide (VIP) inhibits feeding in chicks. However, the underlying anorexigenic mechanism(s) has not yet been investigated. The present study investigated whether these peptides influence the activity of corticotrophin-releasing factor (CRF) neural pathways in the brain of chicks. Firstly, we found that ICV injections of PACAP and VIP increased plasma corticosterone concentrations. The corticosterone-releasing effect of PACAP was completely attenuated by co-injection of astressin, a CRF receptor antagonist, but this effect was only partial for VIP. These results demonstrated that CRF neurons mediate the actions of PACAP and, to a lesser extent, VIP, and suggest that the signaling mechanisms differ between the two peptides. This difference may arise from the two peptides interacting with different receptors because the corticosterone-releasing effect of PACAP, but not VIP, was completely attenuated by co-injection of PACAP (6–38), a PACAP receptor antagonist. Finally, we examined the effect of ICV co-injection of astressin on the anorexigenic effects of PACAP and VIP and found that the effects of both peptides were attenuated by astressin. Overall, the present study suggests that the anorexigenic effects of PACAP and VIP are mediated by the activation of CRF neurons.  相似文献   

13.
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.  相似文献   

14.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are important neuropeptides in the control of lung physiology. Both of these commonly bind to specific G protein coupled receptors named VPAC(1)-R and VPAC(2)-R, and PAC(1)-R (with higher affinity for PACAP). VIP and PACAP have been implicated in the control of cell proliferation and tumor growth. This study examined the presence of VIP and PACAP receptors in human lung cancer samples, as well as the functionality of adenylyl cyclase (AC) stimulated by both peptides. Results from RT-PCR and immunoblot experiments showed the expression of VPAC(1)-, VPAC(2)- and PAC(1)-R in lung cancer samples. Immunohistochemical studies showed the expression of VPAC(1) and VPAC(2) receptors. These receptors were positively coupled to AC, but the enzyme activity was impaired as compared to normal lung. There were no changes in Galpha(s) or Galpha(i) levels. Present results contribute to a better knowledge of VIP/PACAP actions in lung cancer and support the interest for the development of VIP/PACAP analogues with therapeutic roles.  相似文献   

15.
Abstract: At the end of neuronal migration, the neopallial germinative zone produces glial cells destined to colonize the upper layers of neocortex. High densities of binding sites for vasoactive intestinal peptide (VIP) have been found in the rodent germinative zone just after completion of neuronal migration, suggesting a possible role of VIP in neocortical astrocytogenesis. In the present study, administration of a VIP antagonist at embryonic days 17 and 18 to pregnant mice was followed by a dramatic depletion of astrocytes in the upper cortical layer of the offspring. The depletion of astrocytes was dose-dependent, with a 42% reduction in the density of astrocytes observed with 50 µg of antagonist. The antagonist effect was reversed by cotreatment with VIP or pituitary adenylate cyclase-activating polypeptide (PACAP), suggesting the involvement of a receptor common to these two neuropeptides. VIP antagonist-induced inhibition of astrocytogenesis was also blocked by Ro 25-1553, a long-acting cyclic VIP analogue selective for the PACAP II VIP2 receptor subclass. Our results demonstrate that VIP and/or PACAP play a crucial physiological role in neocortical astrocytogenesis, possibly through interaction with PACAP II VIP2 receptors.  相似文献   

16.
Recent reports identified and described neural pathways, both hard-wiring and soluble mediators, that control and adjust the peripheral immune response. Immune organs are innervated by fibers rich in neurotransmitters and neuropeptides released in inflammatory conditions. Here we focus on the immunomodulatory role of two peptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP). VIP/PACAP are present and released from both innervation and immune cells, particularly Th2 cells, and immune cells express receptors for VIP/PACAP. VIP/PACAP have a general anti-inflammatory effect, both in innate and adaptive immunity. In innate immunity, VIP/PACAP inhibit the production of pro-inflammatory cytokines and chemokines from macrophages, microglia and dendritic cells. In addition, VIP/PACAP reduce the expression of costimulatory molecules (particularly CD80 and CD86) on the antigen-presenting cells, and therefore reduce stimulation of antigen-specific CD4+ T cells. In terms of adaptive immunity, VIP/PACAP promote Th2-type responses, and reduce the pro-inflammatory Th1-type responses. Several of the molecular mechanisms involved in the inhibition of cytokine and chemokine expression, and in the preferential development and/or survival of Th2 effects, are discussed.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) have opposite actions on the gallbladder; PACAP induces contraction, whereas VIP induces relaxation. Here, we have attempted to identify key residues responsible for their interactions with PACAP (PAC1) and VIP (VPAC) receptors in the guinea pig gallbladder. We synthesized PACAP-27/VIP hybrid peptides and compared their actions on isolated guinea pig gallbladder smooth muscle strips using isotonic transducers. [Ala4]- and [Val5]PACAP-27 were more potent than PACAP-27 in stimulating the gallbladder. In contrast, [Ala4, Val5]- and [Ala4, Val5, Asn9]PACAP-27 induced relaxation similarly to VIP. [Asn9]-, [Thr11]-, or [Leu13]PACAP-27 had 20-70% contractile activity of PACAP-27, whereas [Asn24,Ser25,Ile26]PACAP-27 showed no change in the activity. All VIP analogs, including [Gly4,Ile5,Ser9]VIP, induced relaxation. In the presence of a PAC1 receptor antagonist, PACAP(6-38), the contractile response to PACAP-27 was inhibited and relaxation became evident. RT-PCR analysis revealed abundant expressions of PAC1 receptor, "hop" splice variant, and VPAC1 and VPAC2 receptor mRNAs in the guinea pig gallbladder. In conclusion, PACAP-27 induces contraction of the gallbladder via PAC1/hop receptors. Gly4 and Ile5 are the key NH2-terminal residues of PACAP-27 that distinguish PAC1/hop receptors from VPAC1/VPAC2 receptors. However, both the NH2-terminal and alpha-helical regions of PACAP-27 are required for initiating gallbladder contraction.  相似文献   

18.
The superior cervical ganglion (SCG) is a well-characterized model of neural development, in which several regulatory signals have been identified. Vasoactive intestinal peptide (VIP) has been found to regulate diverse ontogenetic processes in sympathetics, though functional requirements for high peptide concentrations suggest that other ligands are involved. We now describe expression and functions of pituitary adenylate cyclase-activating polypeptide (PACAP) during SCG ontogeny, suggesting that the peptide plays critical roles in neurogenesis. PACAP and PACAP receptor (PAC(1)) mRNA's were detected at embryonic days 14.5 (E14.5) through E17.5 in vivo and virtually all precursors exhibited ligand and receptor, indicating that the system is expressed as neuroblasts proliferate. Exposure of cultured precursors to PACAP peptides, containing 27 or 38 residues, increased mitogenic activity 4-fold. Significantly, PACAP was 1000-fold more potent than VIP and a highly potent and selective antagonist entirely blocked effects of micromolar VIP, consistent with both peptides acting via PAC(1) receptors. Moreover, PACAP potently enhanced precursor survival more than 2-fold, suggesting that previously defined VIP effects were mediated via PAC(1) receptors and that PACAP is the more significant developmental signal. In addition to neurogenesis, PACAP promoted neuronal differentiation, increasing neurite outgrowth 4-fold and enhancing expression of neurotrophin receptors trkC and trkA. Since PACAP potently activated cAMP and PI pathways and increased intracellular Ca(2+), the peptide may interact with other developmental signals. PACAP stimulation of precursor mitosis, survival, and trk receptor expression suggests that the signaling system plays a critical autocrine role during sympathetic neurogenesis.  相似文献   

19.
20.
Mast cells degranulation can be elicited by a number of biologically important neuropeptides, but the mechanisms involved in mast cell-neuropeptide interactions have not been fully elucidated. Stem cell factor (SCF), also known as c-kit or kit ligand, induces multiple effects on mast cells, including proliferation, differentiation, maturation, and prevents apoptosis. We investigated the ability of SCF to affect mast cell responsiveness to the neuropeptides pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). PACAP 1-27, PACAP1-38, or VIP failed to induced preformed mediator release from mouse bone-marrow-cultured mast cells (BMCMC) derived in concanavalin A-stimulated spleen conditioned medium (CM). By contrast, BMCMC grown in SCF-containing medium or freshly isolated peritoneal mast cells exhibited significant 3H-hydroxytrypamine (5-HT) release in response to PACAP peptides or VIP. Deoxyglucose and the mitochondrial inhibitor antimycin significantly inhibited PACAP-induced 5-HT release indicating that the central event induced by PACAP peptides was exocytosis. The G(alpha)i inhibitor, pertussis toxin, significantly diminished PACAP-induced 5-HT release from BMCMCs in SCF suggesting the involvement of heterotrimeric G-proteins. Western blot analysis using antibodies directed against the human VIP type I/PACAP type II receptor demonstrated a 70-72 kD immunoreactive protein expressed in greater amounts in BMCMC grown in SCF compared with BMCMC in CM. We conclude that SCF induces a mast cell population that is responsive to PACAPs and VIP involving a heterotrimeric G-protein-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号