首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p53, p63, and p73 belong to the p53 family of proteins, which mediate development, differentiation, and various other cellular responses. p53 is involved in many anti-cancer mechanisms, such as cell cycle regulation, apoptosis, and the maintenance of genomic integrity. The p63 gene is controlled by two promoters that direct the expression of two isoforms, one with and one without transactivating properties, known as TAp63 and ΔNp63. In this study, p53-deficient cells (Hep3B and PC-3) and p53-expressing cells (A549 and HepG2) were treated with doxorubicin to examine the possible roles of TAp63 in these cells under genotoxic stress; TAp63 expression was induced in p53-deficient cell lines, but not in p53-expressing cell lines. The ectopic expression of p53 in p53-deficient cells (Hep3B) reduced TAp63 promoter activity, and knockdown of TAp63 attenuated doxorubicin-induced cell growth arrest by promoting cell cycle progression, leading to an increase in the percentage of G(2)/M cells. Moreover, knockdown of TAp63 increased cell sensitivity to doxorubicin-induced genomic damage. Our results suggest that TAp63 may play a compensatory role in cell cycle regulation and DNA damage repair in p53-deficient cancer cells.  相似文献   

2.
3.
4.
5.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

6.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF). Although primarily proposed to require a functional p53.Mdm-2 signaling axis, recently p14(ARF) has been implicated in p53-independent cell cycle regulation. Here we show that p14(ARF) preferentially induces a G(2) arrest in tumor cells lacking functional p53 and/or p21. Expression of p14(ARF) impaired mitotic entry and enforced a primarily cytoplasmic localization of p34(cdc2) that was associated with a decrease in p34(cdc2) kinase activity and reduced p34(cdc2) protein expression. A direct physical interaction between p14(ARF) and p34(cdc2) was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14(ARF)-induced depletion of p34(cdc2) was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G(2)-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34(cdc2) using a constitutively active, phosphorylation-deficient p34(cdc2AF) mutant alleviated this p14(ARF)-induced G(2) arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14(ARF) arrests cells lacking functional p53/p21 in the G(2) phase of the cell cycle by targeting p34(cdc2) kinase. This may represent an important fail-safe mechanism by which p14(ARF) protects p53/p21-deficient cells from unrestrained proliferation.  相似文献   

7.
p63 and p73: roles in development and tumor formation   总被引:12,自引:0,他引:12  
The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knockouts exhibit severe developmental abnormalities but no increased cancer susceptibility, whereas this picture is reversed for p53 knockouts. Neither p63 nor p73 is the target of inactivating mutations in human cancers. Genomic organization is more complex in p63 and p73, largely the result of an alternative internal promoter generating NH2-terminally deleted dominant-negative proteins that engage in inhibitory circuits within the family. Deregulated dominant-negative p73 isoforms might play an active oncogenic role in some human cancers. Moreover, COOH-terminal extensions specific for p63 and p73 enable further unique protein-protein interactions with regulatory pathways involved in development, differentiation, proliferation, and damage response. Thus, p53 family proteins take on functions within a wide biological spectrum stretching from development (p63 and p73), DNA damage response via apoptosis and cell cycle arrest (p53, TAp63, and TAp73), chemosensitivity of tumors (p53 and TAp73), and immortalization and oncogenesis (DeltaNp73).  相似文献   

8.
9.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

10.
11.
12.
13.
14.
15.
p53 is associated with p34cdc2 in transformed cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Milner  A Cook    J Mason 《The EMBO journal》1990,9(9):2885-2889
The normal functioning of p53 is thought to involve p53 target proteins. We have previously identified a cellular 35 kd protein associated with p53 and now report evidence identifying this 35 kd protein as p34cdc2, product of the cell cycle control cdc2 gene. The association between p53 and p34cdc2 was detected in SV3T3 and T3T3 cell lines, both expressing the wild-type p53 phenotype, and in 3T3tx cells, expressing 'mutant' p53 phenotype. Binding of the mutant p53 phenotype with p34cdc2 was greatly reduced relative to wild-type. Complexes of p53-p34cdc2 may represent inactivation or activation of either component. The p34cdc2 kinase functions at cell cycle control points and is necessary for entry and passage through mitosis. It also operates in G1 and is involved in the commitment of cells into the proliferative cycle. Since we were unable to detect p53-p34cdc2 complexes in mitotic cells we propose that the interaction between p53 and p34cdc2 may be functional in cell growth control, possibly to promote or to suppress cell proliferation.  相似文献   

16.
I Hoffmann  G Draetta    E Karsenti 《The EMBO journal》1994,13(18):4302-4310
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.  相似文献   

17.
The biological activity of retinoic acid (RA) was examined in human hepatoma Hep3B cells. Under serum-deprived conditions, RA induced S/M-phase elevation and mitotic index increase within 24 h, followed by apoptosis. This RA-induced apoptosis was accompanied by p53-independent up-regulation of endogenous p21(CIPI/Waf1) and Bax proteins, as well as activation of p34(cdc2) kinase, and increase of Rb2 protein level and phosphorylation pattern. In addition, RA had no effect on the levels of Bcl-XL; Bcl-XS; cyclins A, B, D1, D3, or E; or Rb1 expression but markedly down-modulated Cdk2 kinase activity and reduced Cdk4 expression. RA also slightly delayed p27(Kip1) expression. Olomoucine, a potent p34(cdc2) and Cdk2 inhibitor, effectively blocked RA-mediated p34(cdc2) kinase activation and prevented RA-induced apoptosis. Furthermore, antisense oligonucleotide complementary to p21(CIP2/Waf1) and p34(cdc2) mRNA significantly rescued RA-induced apoptosis. Our data indicate that p21(CIP2/Waf1) overexpression may not be the only regulatory factor necessary for RA-induced apoptosis in human hepatoma Hep3B cells. RA treatment leads to Rb2 hyperphosphorylation, and p34(cdc2) kinase activation is coincident with an aberrant mitotic progression, followed by appearance of abnormal nucleus. This aberrant cell cycle progression appeared requisite for RA-induced cell death. These findings suggest that inappropriate regulation of the cell cycle regulators p21(CIP2/Waf1) and p34(cdc2) is coupled with induction of Bax and involved in cell death with apoptosis when Hep3B cells are exposed to RA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号