首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidate phosphatase (PAP) enzymes are classified as either Mg(2+)-dependent (PAP1) or Mg(2+)-independent (PAP2) with respect to their Mg(2+) cofactor requirement for catalytic activity. Sensitivity to the thioreactive compound N-ethylmaleimide (NEM) has also been used to differentiate PAP1 (NEM-sensitive) from PAP2 (NEM-insensitive) activity in mammalian cells. We report here the cloning and initial characterization of DPPL1 and DPPL2, representatives of a novel type of mammalian phosphatidate phosphatase. Both DPPL1 and DPPL2 show greater homology to a yeast diacylglycerol pyrophosphate (DGPP) phosphatase, DPP1, than to known phosphatidate phosphatases of mammals. Like the yeast DPP1 protein, both DPPL1 and DPPL2 proteins show broad substrate specificity, but DGPP is the preferred substrate compared with LPA and PA. These reactions are Mg(2+)-independent, but unlike DPP1 and mammalian PAP2, they are sensitive to NEM. DPPL1 mRNA is ubiquitously expressed in various tissues and cells, but DPPL2 mRNA is restricted to several tissues including the brain, kidney and testis, and it is preferentially expressed in endothelial cells. Immunohistological staining of synovium containing vessels, plasma cells and lymphocytes revealed specific expression of DPPL2 protein in the endothelium. Collectively, our work indicates that DPPL1 and DPPL2 represent a novel type of mammalian phosphatidate phosphatase.  相似文献   

2.
Activities of phosphatidate phosphohydrolase and palmitoyl-CoA hydrolase were determined in cardiac subcellular fractions prepared from rabbits which has received tri-iodothyronine and from hamsters with hereditary cardiomyopathy (strain BIO 14.6). 1. Both mitochondrial and microsomal fractions of hyperthyroid rabbit hearts produced 4-5 times as much diacylglycerol 3-phosphate from glycerol 3-phosphate and palmitate as did those of euthyroid hearts. 2. Phosphatidate phosphohydrolase, measured with phosphatidate emulsion, was activated by 1mm-Mg(2+) in all but the mitochondrial fraction of euthyroid rabbit hearts. The activation was more pronounced in subcellular fractions isolated from hyperthyroid hearts, so that the measured activities were significantly increased above those of the controls. The highest activity was found in the microsomal and lysosomal fractions. 3. In the absence of Mg(2+) during incubation, the difference in phosphohydrolase activities between eu- and hyper-thyroid states was not significant. 4. The phosphohydrolase of subcellular fractions of control hamsters did not respond to addition of 0.5-8.0mm-Mg(2+). The enzyme from cardiomyopathic hearts was slightly inhibited by this bivalent cation and therefore significant increases in activity were observed only in the absence of Mg(2+) from the assay system. 5. The rate of reaction by soluble phosphatidate phosphohydrolase was similar regardless of the nature of the substrate. Both when microsomal-bound phosphatidate was used as the substrate and when phosphatidate suspension was used, the activity of soluble enzyme was lower than that of the microsomal and lysosomal enzymes measured with phosphatidate suspension; this was especially so when the assay was carried out in the absence of Mg(2+). Neither tri-iodothyronine nor cardiomyopathy influenced the soluble phosphohydrolase activity in the two species. 6. Neither tri-iodothyronine nor cardiomyopathy significantly changed palmitoyl-CoA hydrolase activities in subcellular fractions. 7. Microsomal diacylglycerol acyltransferase and myocardial triacylglycerol content were also unchanged in the hyperthyroid state.  相似文献   

3.
The Saccharomyces cerevisiae PAH1-encoded Mg2+-dependent phosphatidate phosphatase (PAP1, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol and Pi. This enzyme plays a major role in the synthesis of triacylglycerols and phospholipids in S. cerevisiae. PAP1 contains the DXDX(T/V) catalytic motif (DIDGT at residues 398-402) that is shared by the mammalian fat-regulating protein lipin 1 and the superfamily of haloacid dehalogenase-like proteins. The yeast enzyme also contains a conserved glycine residue (Gly80) that is essential for the fat-regulating function of lipin 1 in a mouse model. In this study, we examined the roles of the putative catalytic motif and the conserved glycine for PAP1 activity by a mutational analysis. The PAP1 activities of the D398E and D400E mutant enzymes were reduced by >99.9%, and the activity of the G80R mutant enzyme was reduced by 98%. The mutant PAH1 alleles whose products lacked PAP1 activity were nonfunctional in vivo and failed to complement the pah1Delta mutant phenotypes of temperature sensitivity, respiratory deficiency, nuclear/endoplasmic reticulum membrane expansion, derepression of INO1 expression, and alterations in lipid composition. These results demonstrated that the PAP1 activity of the PAH1 gene product is essential for its roles in lipid metabolism and cell physiology.  相似文献   

4.
Mg(2+)-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and P(i). In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg(2+)-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G. M. (1989) J. Biol. Chem. 264, 8641-8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg(2+)-dependent PA phosphatase activity, whereas the pah1Delta mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg(2+)-dependent PA phosphatase enzyme and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA and had reduced amounts of diacylglycerol and its derivative triacylglycerol.ThePAH1-encoded Mg(2+)-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg(2+)-dependent PA phosphatase enzyme.  相似文献   

5.
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.  相似文献   

6.
ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone.  相似文献   

7.
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.  相似文献   

8.
An Arabidopsis thaliana gene (AtLPP1) was isolated on the basis that it was transiently induced by ionizing radiation. The putative AtLPP1 gene product showed homology to the yeast and mammalian lipid phosphate phosphatase enzymes and possessed a phosphatase signature sequence motif. Heterologous expression and biochemical characterization of the AtLPP1 gene in yeast showed that it encoded an enzyme (AtLpp1p) that exhibited both diacylglycerol pyrophosphate phosphatase and phosphatidate phosphatase activities. Kinetic analysis indicated that diacylglycerol pyrophosphate was the preferred substrate for AtLpp1p in vitro. A second Arabidopsis gene (AtLPP2) was identified based on sequence homology to AtLPP1 that was also heterologously expressed in yeast. The AtLpp2p enzyme also utilized diacylglycerol pyrophosphate and phosphatidate but with no preference for either substrate. The AtLpp1p and AtLpp2p enzymes showed differences in their apparent affinities for diacylglycerol pyrophosphate and phosphatidate as well as other enzymological properties. Northern blot analyses showed that the AtLPP1 gene was preferentially expressed in leaves and roots, whereas the AtLPP2 gene was expressed in all tissues examined. AtLPP1, but not AtLPP2, was regulated in response to various stress conditions. The AtLPP1 gene was transiently induced by genotoxic stress (gamma ray or UV-B) and elicitor treatments with mastoparan and harpin. The regulation of the AtLPP1 gene in response to stress was consistent with the hypothesis that its encoded lipid phosphate phosphatase enzyme may attenuate the signaling functions of phosphatidate and/or diacylglycerol pyrophosphate that form in response to stress in plants.  相似文献   

9.
We previously identified mutations in the Lpin1 gene, encoding lipin-1, as the underlying cause of lipodystrophy in the fatty liver dystrophy (fld) mutant mouse. Lipin-1 is normally expressed at high levels in adipose tissue and skeletal muscle, and deficiency in the fld mouse causes impaired adipose tissue development, insulin resistance, and altered energy expenditure. We also identified two additional lipin protein family members of unknown function, lipin-2 and lipin-3. Han et al. (Han, G. S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218) recently demonstrated that the single lipin homolog in yeast, Smp2, exhibits phosphatidate phosphatase type-1 (PAP1) activity, which has a key role in glycerolipid synthesis. Here we demonstrate that lipin-1 accounts for all of the PAP1 activity in white and brown adipose tissue and skeletal muscle. However, livers of lipin-1-deficient mice exhibited normal PAP1 activity, indicating that other members of the lipin protein family could have PAP1 activity. Consistent with this possibility, recombinant lipin-2 and lipin-3 possess PAP1 activity. Each of the three lipin family members showed Mg2+-dependent activity that was specific for phosphatidate under the conditions employed. The different lipins showed distinct tissue expression patterns. Our results establish the three mammalian lipin proteins as PAP1 enzymes and explain the biochemical basis for lipodystrophy in the lipin-1-deficient fld mouse.  相似文献   

10.
Glucocorticoids (GCs) increase hepatic phosphatidate phosphatase (PAP1) activity. This is important in enhancing the liver's capacity for storing fatty acids as triacylglycerols (TAGs) that can be used subsequently for beta-oxidation or VLDL secretion. PAP1 catalyzes the conversion of phosphatidate to diacylglycerol, a key substrate for TAG and phospholipid biosynthesis. PAP1 enzymes in liver include lipin-1A and -1B (alternatively spliced isoforms) and two distinct gene products, lipin-2 and lipin-3. We determined the mechanisms by which the composite PAP1 activity is regulated using rat and mouse hepatocytes. Levels of lipin-1A and -1B mRNA were increased by dexamethasone (dex; a synthetic GC), and this resulted in increased lipin-1 synthesis, protein levels, and PAP1 activity. The stimulatory effect of dex on lipin-1 expression was enhanced by glucagon or cAMP and antagonized by insulin. Lipin-2 and lipin-3 mRNA were not increased by dex/cAMP, indicating that increased PAP1 activity is attributable specifically to enhanced lipin-1 expression. This work provides the first evidence for the differential regulation of lipin activities. Selective lipin-1 expression explains the GC and cAMP effects on increased hepatic PAP1 activity, which occurs in hepatic steatosis during starvation, diabetes, stress, and ethanol consumption.  相似文献   

11.
The properties and subcellular distribution of phosphatidate phosphatase (EC 3.1.3.4) from adipose tissue have been investigated. The enzyme was assayed using both aqueous phosphatidate and membrane-bound phosphatidate as substrates. When measured with aqueous substrate, activity was detected in the mitochondria, the microsomes, and the soluble fraction. Mg(2+) at low concentration stimulated the phosphatidate phosphatase from soluble and microsomal fractions but had no effect on the mitochondrial phosphatidate phosphatase. At higher concentration Mg(2+) was inhibitory. In the presence of Mg(2+), the phosphatidate phosphatase from soluble and microsomal fractions was active against membrane-bound phosphatidate. No activity was demonstrated with membrane-bound substrate in the absence of Mg(2+). Mitochondria did not contain activity toward the membrane-bound substrate. The rate of utilization of aqueous phosphatidate was always higher than that of membrane-bound substrate. These results indicate that there are at least two different phosphatidate phosphatases in adipose tissue.  相似文献   

12.
A Mg 2+-independent and N-ethylmaleimide-insensitive phosphatidate phosphohydrolase (PAP-2) has been identified in the plasma membrane of cells and it has been purified. The enzyme is a multi-functional phosphohydrolase that can dephosphorylate phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate and these substrates are competitive inhibitors of the reaction. The action of PAP-2 could terminate signalling by these bioactive lipids and at the same time generates compounds such as diacylglycerol, sphingosine and ceramide which are also potent signalling molecules. In relation to phosphatidate metabolism, sphingosine (or sphingosine l-phosphate) stimulates phospholipase D and thus the formation of phosphatidate. At the same time sphingosine inhibits PAP-2 activity thus further increasing phosphatidate concentrations. By contrast, ceramides inhibit the activation of phospholipase D by a wide variety of agonists and increase the dephosphorylation of phosphatidate,lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. These actions demonstrate ‘cross-talk’ between the glycerolipid and sphingolipid signalling pathways and the involvement of PAP-2 in modifying the balance of the bioactive lipids generated by these pathways during cell activation,  相似文献   

13.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

14.
Phospholipase D 2 (PLD2) is the major PLD isozyme associated with the cardiac sarcolemmal (SL) membrane. Hydrolysis of SL phosphatidylcholine (PC) by PLD2 produces phosphatidic acid (PA), which is then converted to 1,2 diacylglycerol (DAG) by the action of phosphatidate phosphohydrolase type 2 (PAP2). In view of the role of both PA and DAG in the regulation of Ca(2+) movements and the association of abnormal Ca(2+) homeostasis with congestive heart failure (CHF), we examined the status of both PLD2 and PAP2 in SL membranes in the infarcted heart upon occluding the left coronary artery in rats for 1, 2, 4, 8 and 16 weeks. A time-dependent increase in both SL PLD2 and PAP2 activities was observed in the non-infarcted left ventricular tissue following myocardial infarction (MI); however, the increase in PAP2 activity was greater than that in PLD2 activity. Furthermore, the contents of both PA and PC were reduced, whereas that of DAG was increased in the failing heart SL membrane. Treatment of the CHF animals with imidapril, an angiotensin-converting enzyme (ACE) inhibitor, attenuated the observed changes in heart function, SL PLD2 and PAP2 activities, as well as SL PA, PC and DAG contents. The results suggest that heart failure is associated with increased activities of both PLD2 and PAP2 in the SL membrane and the beneficial effect of imidapril on heart function may be due to its ability to prevent these changes in the phospholipid signaling molecules in the cardiac SL membrane.  相似文献   

15.
Myocardial triacylglycerol hydrolysis is subject to product inhibition. After hydrolysis of endogenous triacylglycerols, the main proportion of the liberated fatty acids is re-esterified to triacylglycerol, indicating the importance of fatty acid re-esterification in the regulation of myocardial triacylglycerol homoeostasis. Therefore, we characterized phosphatidate phosphohydrolase (PAP) and diacylglycerol acyltransferase (DGAT) activities, enzymes catalysing the final steps in the re-esterification of fatty acids to triacylglycerols in the isolated rat heart. The PAP activity was mainly recovered in the microsomal and soluble cell fractions, with an apparent Km of 0.14 mM for both the microsomal and the soluble enzyme. PAP was stimulated by Mg2+ and oleic acid. Oleic acid, like a high concentration of KCl, stimulated the translocation of PAP activity from the soluble to the particulate (microsomal) fraction. Myocardial DGAT had an apparent Km of 3.8 microM and was predominantly recovered in the particulate (microsomal) fraction. Both enzyme activities were significantly increased after acute streptozotocin-induced diabetes, PAP from 15.6 +/- 1.1 to 28.1 +/- 3.6 m-units/g wet wt. (P less than 0.01) and DGAT from 2.23 +/- 0.11 to 3.01 +/- 0.11 m-units/g wet wt. (P less than 0.01). In contrast with diabetes, low-flow ischaemia during 30 min did not affect PAP and DGAT activity in rat hearts. Perfusion with glucagon (0.1 microM) during 30 min did not affect total PAP activity, but changed the subcellular distribution. More PAP activity was recovered in the particulate fraction. DGAT activity was lowered by glucagon treatment from 0.37 +/- 0.03 to 0.23 +/- 0.02 m-unit/mg of microsomal protein (P less than 0.05). The role of PAP and DGAT activity and PAP distribution in the myocardial glucose/fatty acid cycle is discussed.  相似文献   

16.
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.  相似文献   

17.
Lipins are the founding members of a novel family of Mg(2+)-dependent phosphatidate phosphatases (PAP1 enzymes) that play key roles in fat metabolism and lipid biosynthesis. Despite their importance, there is still little information on how their activity is regulated. Here we demonstrate that the functions of lipin 1 and 2 are evolutionarily conserved from unicellular eukaryotes to mammals. The two lipins display distinct intracellular localization in HeLa M cells, with a pool of lipin 2 exhibiting a tight membrane association. Small interfering RNA-mediated silencing of lipin 1 leads to a dramatic decrease of the cellular PAP1 activity in HeLa M cells, whereas silencing of lipin 2 leads to an increase of lipin 1 levels and PAP1 activity. Consistent with their distinct functions in HeLa M cells, lipin 1 and 2 exhibit reciprocal patterns of protein expression in differentiating 3T3-L1 adipocytes. Lipin 2 levels increase in lipin 1-depleted 3T3-L1 cells without rescuing the adipogenic defects, whereas depletion of lipin 2 does not inhibit adipogenesis. Finally, we show that the PAP1 activity of both lipins is inhibited by phosphorylation during mitosis, leading to a decrease in the cellular PAP1 activity during cell division. We propose that distinct and non-redundant functions of lipin 1 and 2 regulate lipid production during the cell cycle and adipocyte differentiation.  相似文献   

18.
A sensitive radioactive assay of acyl CoA:sn-glycerol-3-phosphate-O-acyltransferase (EC 2.3.1.15) was developed to study the properties and subcellular distribution of this enzyme in rat epididymal adipose tissue. The esterification of sn-glycerol-3-phosphate was measured in the presence of palmitoyl CoA or palmitate, ATP, CoA, and Mg(2+) at pH 7.5. The presence of glycerophosphate acyltransferase was detected in both mitochondria and microsomes. The product of this reaction was identified as phosphatidate by thin-layer chromatography and dual isotope incorporation studies. Several divalent cations reduced the activity of this enzyme. Although Mg(2+) was not required for the activity of glycerophosphate acyltransferase, its addition to the incubation mixture resulted in an increased formation of neutral lipids at the expense of phosphatidate. This result is explained by an activation of microsomal phosphatidate phosphatase (EC 3.1.3.4). The effect of Mg(2+) was completely abolished by Ni(2+), Co(2+), Mn(2+), and Zn(2+). These studies suggest that the balance between Mg(2+) and several other divalent ions may be important in the regulation of neutral lipid synthesis in adipose tissue.  相似文献   

19.
Ribonuclease H1 (RNase H1) is a widespread enzyme found in a range of organisms from viruses to humans. It is capable of degrading the RNA moiety of DNA-RNA hybrids and requires a bivalent ion for activity. In contrast with most eukaryotes, which have one gene encoding RNase H1, the activity of which depends on Mg(2+) ions, Caenorhabditis elegans has four RNase H1-related genes, and one of them has an isoform produced by alternative splicing. However, little is known about the enzymatic features of the proteins encoded by these genes. To determine the differences between these enzymes, we compared the expression patterns of each RNase H1-related gene throughout the development of the nematode and the RNase H activities of their recombinant proteins. We found gene-specific expression patterns and different enzymatic features. In particular, besides the enzyme that displays the highest activity in the presence of Mg(2+) ions, C. elegans has another enzyme that shows preference for Mn(2+) ion as a cofactor. We characterized this Mn(2+)-dependent RNase H1 for the first time in eukaryotes. These results suggest that there are at least two types of RNase H1 in C. elegans depending on the developmental stage of the organism.  相似文献   

20.
Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p–Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p–Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号