首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza virus matrix protein (M1), a critical protein required for virus assembly and budding, is presumed to interact with viral glycoproteins on the outer side and viral ribonucleoprotein on the inner side. However, because of the inherent membrane-binding ability of M1 protein, it has been difficult to demonstrate the specific interaction of M1 protein with hemagglutinin (HA) or neuraminidase (NA), the influenza virus envelope glycoproteins. Using Triton X-100 (TX-100) detergent treatment of membrane fractions and floatation in sucrose gradients, we observed that the membrane-bound M1 protein expressed alone or coexpressed with heterologous Sendai virus F was totally TX-100 soluble but the membrane-bound M1 protein expressed in the presence of HA and NA was predominantly detergent resistant and floated to the top of the density gradient. Furthermore, both the cytoplasmic tail and the transmembrane domain of HA facilitated binding of M1 to detergent-resistant membranes. Analysis of the membrane association of M1 in the early and late phases of the influenza virus infectious cycle revealed that the interaction of M1 with mature glycoproteins which associated with the detergent-resistant lipid rafts was responsible for the detergent resistance of membrane-bound M1. Immunofluorescence analysis by confocal microscopy also demonstrated that, in influenza virus-infected cells, a fraction of M1 protein colocalized with HA and associated with the HA in transit to the plasma membrane via the exocytic pathway. Similar results for colocalization were obtained when M1 and HA were coexpressed and HA transport was blocked by monensin treatment. These studies indicate that both HA and NA interact with influenza virus M1 and that HA associates with M1 via its cytoplasmic tail and transmembrane domain.  相似文献   

2.
Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA.  相似文献   

3.
The influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. By using deletion mutants and chimeric constructs of influenza virus NA with the human transferrin receptor, a type II basolateral transmembrane protein, we investigated the location of the apical sorting signal of influenza virus NA. When these mutant and chimeric proteins were expressed in stably transfected polarized MDCK cells, the transmembrane domain of NA, and not the cytoplasmic tail, provided a determinant for apical targeting in polarized MDCK cells and this transmembrane signal was sufficient for sorting and transport of the ectodomain of a reporter protein (transferrin receptor) directly to the apical plasma membrane of polarized MDCK cells. In addition, by using differential detergent extraction, we demonstrated that influenza virus NA and the chimeras which were transported to the apical plasma membrane also became insoluble in Triton X-100 but soluble in octylglucoside after extraction from MDCK cells during exocytic transport. These data indicate that the transmembrane domain of NA provides the determinant(s) both for apical transport and for association with Triton X-100-insoluble lipids.  相似文献   

4.
When 1–5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by four successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cells NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble form and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells is not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.  相似文献   

5.
6.
《The Journal of cell biology》1983,97(4):1309-1314
In chicken embryo erythroid cells, newly synthesized vimentin first enters a Triton X-100 (TX-100)-soluble pool and subsequently assembles posttranslationally into TX-100-insoluble vimentin filaments (Blikstad I., and E. Lazarides, J. Cell Biol., 96:1803-1808). Here we show that incubation of chicken embryo erythroid cells in a medium in which arginine has been substituted by its amino acid analogue, canavanine, results in the inhibition of the posttranslational assembly of vimentin into the TX-100-insoluble filaments. Immunoprecipitation and subsequent SDS gel electrophoresis showed that the synthesis of canavanine- vimentin is not inhibited and that it accumulates in the TX-100-soluble compartment. Pulse-chase experiments with [35S]methionine demonstrated that while arginine-vimentin can be rapidly chased from the soluble to the cytoskeletal fraction, canavanine-vimentin remains in the soluble fraction, where it turns over. The effect of canavanine on the assembly of vimentin did not prevent the assembly of arginine-vimentin, as cells labeled with [35S]methionine first in the presence of canavanine and then in the presence of arginine contained labeled canavanine-vimentin only in the soluble fraction, and arginine-vimentin in both the soluble and cytoskeletal fractions. These results suggest that arginine residues play an essential role in the assembly of vimentin in vivo.  相似文献   

7.
Cell-free translation of influenza virus mRNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
Cytoplasmic poly (A)-rich RNA extracted from fowl plague virus-infected cells was found to program efficiently the translation of two major peptides in the wheat germ cell-free system. These peptides have the same electrophoretic mobility, on polyacrylamide gels, as the two major virion proteins M and NP. [35S] methionine tryptic peptide analysis by one-dimensionalthin-layer ionophoresis and finger printing by two-dimensional thin-layer ionophoresis and chromatography show a high degree of similarity between the two in vitro products and the authentic viral proteins M and NP. Although virion RNA is devoid of any poly (A) sequence, it is confirmed here that the viral complementary cytoplasmic RNA contains poly (A) stretches of varying lengths. Intact purified virion was found to promote the synthesis of very low amounts of the same NP and M proteins in this cell-free system. Quantitative aspects of data would indicate that this is due to minute amounts of complementary viral RNA associated with the virion or with the virion RNA itself. In conclusion, it is shown diectly by cell-free translation of authentic viral products that the influenza virion is "negative stranded" (Baltimore, 1971), at least for its two major structural proteins.  相似文献   

8.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

9.
《The Journal of cell biology》1983,96(5):1248-1257
The progressive cytoskeletal alterations of frog virus 3-infected baby hamster kidney (BHK) and fathead minnow (FHM) cells were studied by immunofluorescence and electron microscopy. The virus assembly sites, which contain viral genomes and viral proteins, were detected in the cytoplasm at 4 h (FHM) or 6 h (BHK) and mature virions appeared 2 h later. When infected cells were treated with Triton X-100, the assembly sites were found in association with the cytoskeleton. In infected cells, the number of microtubules progressively decreased but a few microtubules traversing in the vicinity of the assembly sites remained intact. Early in infection, the intermediate filaments retracted from the cell periphery, delimited the forming assembly sites, and remained there throughout infection. We suggest that intermediate filaments are involved in the formation of assembly sites. In addition, the filaments either by themselves or in conjunction with microtubules may anchor the assembly sites near the nucleus. The microfilament bundles (stress fibers) disappeared with the formation of assembly sites, and late in infection many projections containing microfilaments and virus particles appeared at the cell surface. The observation suggests a role for microfilaments in virus release. Taken together, these results provide the first example of a virus-infected cell in which all three cytoskeletal filaments show profound organizational changes and suggest an active participation of the host cytoskeleton in viral functions.  相似文献   

10.
We studied the role of the association between glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipid (GSL) clusters in apical targeting using gD1-DAF, a GPI-anchored protein that is differentially sorted by three epithelial cell lines. Differently from MDCK cells, where both gD1-DAF and glucosylceramide (GlcCer) are sorted to the apical membrane, in MDCK Concanavalin A-resistant cells (MDCK-ConAr) gD1-DAF was mis-sorted to both surfaces, but GlcCer was still targeted to the apical surface. In both MDCK and MDCK-ConAr cells, gD1-DAF became associated with TX-100-insoluble GSL clusters during transport to the cell surface. In dramatic contrast with MDCK cells, the Fischer rat thyroid (FRT) cell line targeted both gD1-DAF and GlcCer basolaterally. The targeting differences for GSLs in FRT and MDCK cells cannot be accounted for by a differential ability to form clusters because, in spite of major differences in the GSL composition, both cell lines assembled GSLs into TX-100-insoluble complexes with identical isopycnic densities. Surprisingly, in FRT cells, gD1-DAF did not form clusters with GSLs and, therefore, remained completely soluble. This clustering defect in FRT cells correlated with the lack of expression of VIP21/caveolin, a protein localized to both the plasma membrane caveolae and the trans Golgi network. This suggests that VIP21/caveolin may have an important role in recruiting GPI-anchored proteins into GSL complexes necessary for their apical sorting. However, since MDCK-ConAr cells expressed caveolin and clustered GPI-anchored proteins normally, yet mis-sorted them, our results also indicate that clustering and caveolin are not sufficient for apical targeting, and that additional factors are required for the accurate apical sorting of GPI-anchored proteins.  相似文献   

11.
Spiro MJ  Spiro RG 《Glycobiology》2000,10(11):1235-1242
The occurrence of sulfate substituents on several positions of glycoprotein N-linked oligosaccharides prompted us to determine the subcellular localization and temporal relationships of the addition of these anionic groups employing as a model system the hemagglutinin (HA) produced by influenza virus-infected Madin-Darby canine kidney (MDCK) cells. It became apparent from a study of the HA glycoprotein in subcellular fractions resolved by Nycodenz gradient centrifugation following pulse-chase radiolabeling that sulfation of the complex N-linked oligosaccharides occurs only after they have been processed to an endo-beta-N-acetylglucosaminidase-resistant state and have reached the medial/trans Golgi and the trans Golgi network (TGN), with the former carrying out most of the sulfation activity. Hydrazine/nitrous acid/NaBH(4) treatment of the HA from the subcellular fractions indicated that C-3 of the galactose as well as C-6 of the N-acetylglucosamine residues of the N-acetyllactosamine chains became sulfated in these post ER fractions, as did the C-6 of the outer N-acetylglucosamine of the di-N-acetylchitobiose core. Consistent with the specificities of the stepwise assembly of the N-acetyllactosamine branches, we observed that the 3'-phosphoadenosine 5'-phosphosulfate (PAPS):GlcNAc-6-O-sulfotransferase migrated in the gradient to a medial/trans Golgi position while in contrast the PAPS:Gal-3-O-sulfotransferase was found in both Golgi and TGN locations. In accordance with the concept that beta-galactosylation must precede the sulfation catalyzed by the latter enzyme, we observed the presence of UDP-Gal:GlcNAc galactosyltransferase in both these sites in the MDCK cells. The presence of the Gal-3-O-sulfotransferase in the TGN is particularly important in the influenza virus-infected cells, as it makes possible the addition of terminal anionic groups after removal of the sialic acid residues by the viral neuraminidase.  相似文献   

12.
In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution.  相似文献   

13.
Influenza virus acquires a lipid raft-containing envelope by budding from the apical surface of epithelial cells. Polarised budding involves specific sorting of the viral membrane proteins, but little is known about trafficking of the internal virion components. We show that during the later stages of virus infection, influenza nucleoprotein (NP) and polymerase (the protein components of genomic ribonucleoproteins) localised to apical but not lateral or basolateral membranes, even in cell types where haemagglutinin was found on all external membranes. Other cytosolic components of the virion either distributed throughout the cytoplasm (NEP/NS2) or did not localise solely to the apical plasma membrane in all cell types (M1). NP localised specifically to the apical surface even when expressed alone, indicating intrinsic targeting. A similar proportion of NP associated with membrane fractions in flotation assays from virus-infected and plasmid-transfected cells. Detergent-resistant flotation at 4 degrees C suggested that these membranes were lipid raft microdomains. Confirming this, cholesterol depletion rendered NP detergent-soluble and furthermore, resulted in its partial redistribution throughout the cell. We conclude that NP is independently targeted to the apical plasma membrane through a mechanism involving lipid rafts and propose that this helps determine the polarity of influenza virus budding.  相似文献   

14.
Li M  Yang C  Tong S  Weidmann A  Compans RW 《Journal of virology》2002,76(23):11845-11852
To investigate the association of the murine leukemia virus (MuLV) Env protein with lipid rafts, we compared wild-type and palmitoylation-deficient mutant Env proteins by using extraction with the mild detergent Triton X-100 (TX-100) followed by a sucrose gradient flotation assay. We found that the wild-type MuLV Env protein was resistant to ice-cold TX-100 treatment and floated to the top of the gradients. In contrast, we observed that the palmitoylation-deficient mutant Env protein was mostly soluble when extracted by ice-cold TX-100 and stayed at the bottom of the gradients. Both the wild-type and mutant Env proteins were found to be soluble when treated with methyl-beta-cyclodextrin before extraction with ice-cold TX-100 or when treated with ice-cold octyl-beta-glucoside instead of TX-100. These results indicate that the MuLV Env protein is associated with lipid rafts and that palmitoylation of the Env protein is critical for lipid raft association. Although the palmitoylation-deficient Env mutant was synthesized at a level similar to that of the wild-type Env, it was found to be expressed at reduced levels on the cell surface. We observed syncytium formation activity with both the wild-type and mutant Env proteins, indicating that palmitoylation or raft association is not required for MuLV viral fusion activity.  相似文献   

15.
The entry of fowl plague virus, and avian influenza A virus, into Madin- Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 degrees C, viruses bound to the cell surface but were not internalized. Binding was not greatly dependent on the pH of the medium and reached an equilibrium level in 60-90 min. Over 90% of the bound viruses were removed by neuraminidase but not by proteases. When cells with prebound virus were warmed to 37 degrees C, part of the virus became resistant to removal b neuraminidase, with a half-time of 10-15 min. After a brief lag period, degraded viral material was released into the medium. The neuraminidase- resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride, a lysosomotropic agent, blocked both the infection and the degradation of viral protein. When the entry process was observed by electron microscopy, viruses were seen bound primarily to microvilli on the cell surface at 0 degrees C and, after warming at 37 degrees C, were endocytosed in coated pits, coated vesicles, and large smooth-surfaced vacuoles. Viruses were also present in smooth-surfaced invaginations and small smooth-surfaced vesicles at both temperatures. At physiological pH, no fusion of the virus with the plasma membrane was observed. When prebound virus was incubated at a pH of 5.5 or below for 1 min at 37 degrees C, fusion was, however, detected by ferritin immunolabeling. t low multiplicity, 90% of the prebound virus became neuraminidase- resistant and was presumably fused after only 30 s at low pH. These experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm. The entry pathway of fowl plague virus thus resembles tht earlier described for Semliki Forest virus.  相似文献   

16.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

17.
A number of translation inhibitors were tested for their effects on both control and encephalomyocarditis virus-infected mouse 3T6 cells. The virus-infected cells were specifically inhibited by gougerotin, edeine, and blasticidin S, whereas these drugs failed to penetrate into uninfected cells. Inhibition of infected cells by gougerotin became apparent when the synthesis of viral proteins commenced, suggesting that the latter process is accompanied by a permeability change in the cells that allows uptake of the drug. This permeability change was not observed in cells treated with cycloheximide soon after viral infection, although treatment with actinomycin D did not prevent inhibition of gougerotin. It is possible, therefore, that a specific viral protein is involved in the permeability change of the plasma membrane. Moreover, gougerotin was unable to inhibit protein synthesis in the presence of zinc ions, thus preventing gougerotin from entering into the infected cell. Membrane leakiness was not restricted to the encephalomyocarditis virus-3T6 system; it was also observed in mengovirus-infected 3T6 cells, Semliki Forest virus-infected BHK cells, and simian virus 40-infected CVI1 cells at the time in which the synthesis of late proteins is maximal.  相似文献   

18.
Choleragen, when bound to various cultured cells, resisted extraction by Triton X-100 under conditions which retained the cytoskeletal framework of the cells. This resistance (> 75% of the bound toxin) was observed in Friend erythroleukemic, mouse neuroblastoma N18 and NB41A and rat glioma C6 cells even though the different cells varied over 1000-fold in the number of toxin receptors. The extent of extraction did not depend on whether the cells were in monolayer culture or in suspension or whether choleragen was bound at 0 or 37°C. A similar resistance to extraction was also observed in membranes isolated from toxin-treated cells. Using more drastic conditions and other non-ionic detergents, 90% of the bound choleragen was solubilized from cells and membranes. When rat glioma C6 cells, which bind only small amounts of choleragen, were incubated with the ganglioside GM1, toxin binding was increased and the bound toxin was also resistant to extraction. When these cells were incubated with [3H]GM1, up to 70% of the cell-associated GM1 was extracted under the mild conditions. When the GM1-labeled cells were incubated with choleragen or its B (binding) component, there was a significant reduction in the solubilization of GM1. Similar results were obtained with isolated membranes. When choleragen-receptor complexes were isolated from N18 cells labeled with [3H]galactose by immunoadsorption, only labeled GM1 was specifically recovered. These results suggest that it is the choleragen-ganglioside complex that is resistant to detergent extraction.  相似文献   

19.
Influenza viral complementary RNA (cRNA) was purified free from any detectable virion-type RNA (vRNA), and its genetic content and activity in wheat germ cell-free extracts were examined. After phenol-chloroform extraction of cytoplasmic fractions from infected cells, poly(A)-containing viral cRNA is found in two forms: in single-stranded RNA and associated with vRNA in partially and fully double-stranded RNA. To purify single-stranded cRNA free of these double-stranded forms, it was necessary to employ, as starting material, RNA fractions in which cRNA was predominantly single stranded. Two RNA fractions were successfully employed as starting material: polyribosomal RNA and the total cytoplasmic RNA from infected cells treated with 100 mug of cycloheximide (CM) per ml at 3 h after infection. In WSN virus-infected canine kidney (MDCK) cells, the addition of CM at 3 h after infection stimulates the production of cRNA threefold and causes a very large increase in the proportion of the cytoplasmic cRNA which is single stranded; double-stranded RNA forms are greatly reduced in amount. Total cRNA was obtained by oligo(dT)-cellulose chromatography, and single-stranded cRNA was separated from double-stranded forms by Sepharose 4B chromatography. The cRNA preparation purified from polyribosomes consists of 95% single-stranded cRNA, with the remaining 5% apparently being double-stranded RNA forms. The cRNA preparation purified from CM-treated cells (CM cRNA) is even more pure: 100% of the radiolabeled RNA is single-stranded cRNA. Annealing experiments, in which a limited amount of 32P-labeled genome RNA was annealed to the cRNA, indicate that the purified cRNA contains at least 84 to 90% of the genetic information in the vRNA genome. Purified viral cRNA (CM cRNA) is very active in directing the synthesis of virus-specific proteins in wheat germ cell-free extracts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号