首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enolase from bakers' yeast was separated into three isoenzymes by countercurrent distribution. The isoenzymes were partitioned in aqueous polymer two-phase systems containing positively charged trimethylamino poly(ethylene glycol) or negatively charged poly(ethylene glycol) sulphonate. The plots of the partition coefficient of each isoenzyme versus pH in the two biphasic systems intersect at pH equal to the isoelectric point. From slopes of the plots, the net charge of the isoenzymes at pH 6.57 was determined to be +2, −3, and −8 respectively.  相似文献   

2.
Poly(ethylene glycol) activated with tresyl chloride has been covalently linked to albumin as a result of a 2-h incubation in 0.05 M sodium phosphate buffer, pH 7.5, containing 0.125 M sodium chloride (0.344 OSM). The coupling of poly(ethylene glycol) to albumin was demonstrated by the increase in the partition coefficient of the protein in poly(ethylene glycol)-dextran aqueous two-phase systems. A linear relationship between the log of the partition coefficient of the poly(ethylene glycol)-albumin conjugate and the degree of modification (measured as the amino groups consumed during the coupling step) has been demonstrated. Countercurrent distribution in the two-phase system showed that poly(ethylene glycol)-albumin was heterogeneous with respect to its partitioning behavior, indicating that the albumin was not uniformly modified with poly(ethylene glycol).  相似文献   

3.
To study the influence of charges on the partition of solutes in aqueous two-phase systems of polyethylene glycol and dextran, partition coefficients of dimethylaminoethyl-dextran, trimethylamino-dextran, and bis (alpha,omega)-amino-poly(ethylene glycol) were determined as a function of pH (range 2 to 12) and ionic strength. These polymers are derivatives of the phase forming components and carry ionizable groups that are charged or uncharged depending on the pH. Unexpectedly, the largest differences in the partition coefficients were found at high pH, where the modified polymers are uncharged. In addition, the partitioning of low-molecular-weight model compounds, ethylenediamine and iminodiacetic acid, as well as poly-L-lysine and poly(allylamine) was analyzed. A consistent pattern was observed in the partition of polyelectrolytes reflecting the influence of charge, but another property of aqueous phase systems unrelated to charge and changing with pH seems to be superimposed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

5.
Aqueous polymer two-phase systems formed by new thermoseparating polymers   总被引:4,自引:0,他引:4  
A set of new polymers that can be used as phase forming components in aqueous two-phase systems is presented. All polymers studied have thermoseparating properties i.e. form one separate polymer enriched phase and one aqueous solution when heated above the critical temperature. This property makes the polymers attractive alternatives to the polymers used in traditional aqueous two-phase systems such as poly(ethylene glycol) (PEG) and dextran. The thermal phase separation simplifies recycling of the polymers, thus making the aqueous two-phase systems more cost efficient and suitable for use in large scale. Thermoseparating polymers studied have been copolymers of ethylene oxide and propylene oxide (EO-PO), poly (N-isopropylacrylamide) (poly-NIPAM), poly vinyl caprolactam (poly-VCL) and copolymers of N-isopropylacrylamide and vinyl caprolactam with vinyl imidazole (poly(NIPAM-VI) and poly(VCL-VI), respectively). In addition, the copolymer poly(NIPAM-VI) has the property to be uncharged at pH above 7.0 and positively charged at lower pH. This allows the partitioning of protein to be directed by changing the pH in the system instead of the traditional addition of salt to direct the partitioning. Hydrophobically modified EO-PO copolymer (HM-(EO-PO)) with alkyl groups (C14) at both ends forms two-phase system with for example poly(NIPAM-VI). The phase diagram for poly(NIPAM-VI)/HM-(EO-PO) was determined and the model proteins lysozyme and BSA were partitioned in this system. For BSA in poly(NIPAM-VI)/HM-(EO-PO) system a change in pH from 8.0 to 5.4 results in a change of partition coefficient from K=0.8 to K=5.1, i.e. BSA could be transferred from the HM-(EO-PO) phase to the poly(NIPAM-VI) phase. BSA partitioning in poly(NIPAM-VI)/HM-(EO-PO) system allows quantitative BSA recovery, and recoveries of poly(NIPAM-VI) and HM-(EO-PO) were 53% and 92%, respectively, after the thermoseparation step.  相似文献   

6.
The isoelectric points of rat brain synaptosomes, mitochondria and mitoplasts have been determined by using different charged two-phase systems containing dextran and poly(ethylene glycol). The cross-partition diagrams of these organelles show isoelectric points at pH 4.1, 4.5 and 4.7, respectively. The influence of the conformational state of mitochondrial membranes upon their partition in two-phase systems has been studied. Shrunk mitoplasts showed a large change in their partition behavior as reflected by an increased affinity for the lower dextran phase, while shrinkage of mitochondria did not affect their partition. Shrunk mitoplasts showed the same isoelectric point of pH 4.7 as swollen mitoplasts, which indicates that no charge changes occurred on the outer side of the inner mitochondrial membrane during shrinkage of mitoplasts.  相似文献   

7.
The interaction of human serum albumin with fatty acids has been determined using the method of affinity partitioning in aqueous biphasic systems containing dextran, poly(ethylene glycol) and esters of dicarboxylic acids with poly(ethylene glycol). The difference in the partition of albumin in phase systems with and without the poly(ethylene glycol)-bound fatty acid group provides a measure of the interaction of fatty acids with the protein. The relative contribution of the polar and non-polar interaction to the binding of fatty acids to albumin has been estimated by comparing the present data with that obtained earlier using poly(ethylene glycol)-bound straight chain aliphatic hydrocarbons. In both cases, the aliphatic chain should contain a minimum of 8 carbon atoms to affect the partition of albumin and that the maximum effect is obtained with chains containing 16 carbon atoms. The effect of the polymer-bound fatty acid group is higher than the corresponding hydrocarbon only when the number of carbon atoms in it exceeds 12. The relative effect of polymer-bound 16-carbon chains, with and without a carboxyl group in the terminal position is independent of pH in the range 5--9.  相似文献   

8.
Ultraviolet difference absorption spectra produced by ethylene glycol were measured for hen lysozyme [EC 3.2.1.17] and bovine chymotrypsinogen. N-Acetyl-L-tryptophanamide and N-acetyl-L-tyrosinamide were employed as model compounds for tryptophyl and tyrosyl residues, respectively, and their ultraviolet difference spectra were also measured as a function of ethylene glycol concentration. By comparison of the slopes of plots of molar difference extinction coefficients (delta epsilon) versus ethylene glycol concentration for the proteins with those of the model compounds at peak positions (291-293 and 284-287 nm) in the difference spectra, the average number of tyrosyl as well as tryptophyl residues in exposed states could be estimated. The results gave 2.7 tryptophyl and 1.9 tyrosyl residues exposed for lysozyme at pH 2.1 and 2.6 tryptophyl and 3.4 tyrosyl residues exposed for chymotrypsinogen at pH 5.4. The somewhat higher tyrosyl exposure of chymotrypsinogen, compared with the findings from spectrophotometric titration and chemical modification, was not unexpected, because delta epsilon285 was larger than delta epsilon292, and the situation is discussed with reference to preferential interaction of ethylene glycol with the tyrosyl residues and/or side chains in the vicinity of the chromophore in the protein. The procedure employed in the present work seems to be suitable for estimation of the average number of exposed tryptophyl and tyrosyl residues in tryptophan-rich proteins. The effects of ethylene glycol on the circular dichroism spectra of lysozyme at pH 2.1 and chymotrypsinogen at pH 5.4 were also investigated. At high ethylene glycol concentrations, both proteins were found to undergo conformational changes in the direction of more ordered structures, presumably more helical for lysozyme and more beta-structured for chymotrypsinogen.  相似文献   

9.
There is considerable clinical interest in the use of "second-generation" therapeutic proteins produced by conjugation of the native protein with various polymers including poly(ethylene glycol) (PEG). One of the challenges in the production of polymer-protein conjugates is the need to remove residual polymer, native (unreacted) protein, and any reaction byproducts from the final therapeutic formulation. The overall objective of this study was to evaluate the possibility of using ultrafiltration for the purification of a model PEGylated protein. Sieving data were obtained using PEGylated alpha-lactalbumin, the native protein, and the poly(ethylene glycol) over a range of pH, ionic strength, and filtrate flux using both neutral and charge-modified composite regenerated cellulose membranes. Purification of the PEGylated protein was achieved using a two-stage diafiltration process. The first stage used a neutral membrane to remove the unreacted protein and any small reaction byproducts while retaining the large PEGylated product. The second stage used a negatively charged membrane to remove the neutral poly(ethylene glycol) while retaining the PEGylated alpha-lactalbumin as a result of strong electrostatic interactions. These results clearly demonstrate the potential of using membrane-based separations for the purification of second-generation therapeutic proteins.  相似文献   

10.
Four new poly(hydroxyethylaspartamide)-based copolymers bearing (a) poly(ethylene glycol) 2000, (b) poly(ethylene glycol) 5000, (c) poly(ethylene glycol) 2000 and hexadecylalkyl, (d) poly(ethylene glycol) 5000 and hexadecylalkyle, as pendant groups were synthesised. The copolymers were obtained by partial aminolysis of polysuccinimide with poly(ethylene glycol) and hexadecylalkyl amino derivatives followed by reaction with ethanolamine. Naked polyhydroxyaspartamide was obtained by polysuccinimide reaction with ethanolamine. The nuclear magnetic resonance, infrared, light scattering and elemental analysis allowed for the extensive physico-chemical characterisation of the carriers. The molecular mass of all the polymers was in the range of 27000-34000 Da, and the polydispersivity was in the range of 1.5-1.7. By intravenous injection to mice bearing a solid tumour, all the polymeric carriers displayed a bi-compartmental pharmacokinetic behaviour. Both the poly(ethylene glycol) and the hexadecylalkyle conjugation prolonged and enhanced the distribution phase of poly(hydroxyethylaspartamide). The poly(ethylene glycol) conjugation was found to promote the carrier elimination by kidney ultrafiltration and to prevent partially the accumulation in the spleen and in the liver. The poly(ethylene glycol)/hexadecylalkyle conjugates localised preferentially in the liver were over 30% of the dose/g of tissue was determined after 144 h from administration. In the tumour all the polymers displayed a relevant accumulation that significantly increased throughout the time to reach high concentrations after 24 h. In particular, the poly(ethylene glycol)/hexadecylalkyle conjugates achieved a concentration of 15-25% of the dose/g of tissue after 24 h from administration that was maintained up to 144 h.  相似文献   

11.
Hydrophobic affinity partitioning in an aqueous two-phase system, composed of dextran and poly(ethylene glycol), has been used to study the hydrophobic binding capacity of bovine alpha-lactalbumin. The hydrophobicity of the poly(ethylene glycol)-containing phase was adjusted by including varying amounts of fatty acids bound to the polymer via an ester linkage. The change in the logarithmic partition coefficient of the protein in such systems was used as a measure of the hydrophobic binding. This value was strongly influenced by the amount of Ca2+ present as well as the pH value. The results are discussed in terms of the exposure of hydrophobic binding sites on alpha-lactalbumin and their relation to the conformational change in this protein due to Ca(2+)-binding, chelation of Ca2+ and pH dependence.  相似文献   

12.
The effects of low temperature (−18°C) on the stability and partitioning of some glycolytic enzymes within an aqueous two-phase system were studied. The enzymes were phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase present in a crude extract of bakers' yeast. The partitioning of pure phosphofructokinase, isolated from bakers' yeast, was also examined. The two-phase systems were composed of water, poly(ethylene glycol), dextran, and ethylene glycol and buffer. The influence on the partitioning of the presence of ethylene glycol, phenylmethylsulfonyl fluoride and poly(ethylene glycol)-bound Cibacron Blue F3G-A was investigated at −18, 0 and (in some cases) 20°C. The presence of ethylene glycol, phase polymers and low temperature stabilized all three enzyme activities. Cibacron Blue, an affinity ligand for phosphofructokinase, increased its partitioning into the upper phase with decreasing temperature. Depending on the conditions, various amounts of the enzymes were recovered at the interface, also in systems not containing ethylene glycol. The implications of the observed effects on the use of aqueous two-phase systems for the extraction and fractionation of proteins are discussed.  相似文献   

13.
Class I isoenzymes of alcohol dehydrogenase (ADH) were isolated by chromatography of human liver homogenates on DEAE-cellulose, 4-[3-[N-(6-aminocaproyl)-amino]propyl]pyrazole--Sepharose and CM-cellulose. Eight isoenzymes of different subunit composition (alpha gamma 2, gamma 2 gamma 2, alpha gamma 1, alpha beta 1, beta 1 gamma 2, gamma 1 gamma 1, beta 1 gamma 1, and beta 1 beta 1) were purified, and their activities were measured at pH 10.0 by using ethanol, ethylene glycol, methanol, benzyl alcohol, octanol, cyclohexanol, and 16-hydroxyhexadecanoic acid as substrates. Values of Km and kcat for all the isoenzymes, except beta 1 beta 1-ADH, were similar for the oxidation of ethanol but varied markedly for other alcohols. The kcat values for beta 1 beta 1-ADH were invariant (approximately 10 min-1) and much lower (5-15-fold) than those for any other class I isoenzyme studied. Km values for methanol and ethylene glycol were from 5- to 100-fold greater than those for ethanol, depending on the isoenzyme, while those for benzyl alcohol, octanol, and 16-hydroxyhexadecanoic acid were usually 100-1000-fold lower than those for ethanol. The homodimer beta 1 beta 1 had the lowest kcat/Km value for all alcohols studied except methanol and ethylene glycol; kcat values were relatively constant for all isoenzymes acting on all alcohols, and, hence, specificity was manifested principally in the value of Km. Values of Km and kcat/Km revealed for all enzymes examined that the short chain alcohols are the poorest while alcohols with bulky substituents are much better substrates. The experimental values of the kinetic parameters for heterodimers deviate from the calculated average of those of their parent homodimers and, hence, cannot be predicted from the behavior of the latter. Thus, the specificities of both the hetero- and homodimeric isoenzymes of ADH toward a given substrate are characteristics of each. Ethanol proved to be one of the "poorest" substrates examined for all class I isoenzymes which are the predominant forms of the human enzyme. On the basis of kinetic criteria, none of the isoenzymes of class I studied oxidized ethanol in a manner that would indicate an enzymatic preference for that alcohol.  相似文献   

14.
In order to understand the previously demonstrated effect of poly(ethylene glycol) on the stimulation of lymphocyte responses to syngeneic tumor cells (Ben-Sasson, S.A. and Henkart, P.A. (1977) J. Immunol. 119, 227–231), we have investigated the effects of addition of poly(ethylene glycol) to the medium in a number of cellular systems. The binding of trimeric IgG to tumor-lymphocyte Fc receptors was greatly enhanced by poly(ethylene glycol); a substantial increase in binding of trimeric IgG to non-Fc-receptor-bearing tumor cells was also observed. Similarly, the binding of labeled bovine serum albumin to lymphocyte surfaces was increased by poly(ethylene glycol), implying that nonspecific binding of proteins to cells was generally enhanced. The dose-response curve of concanavalin A mitogenesis was shifted to the right, as would be expected from a local increase in concanavalin A concentration. Antibody binding to erythrocytes as detected by complement lysis was similarly increased. It was found that in aqueous two-phase mixtures created by poly(ethylene glycol) and dextran, erythrocytes partition into the dextran phase through exclusion into dextran-rich microdroplets. It is proposed that addition of poly(ethylene glycol) to cell culture media creates a similar separate phase around the cell surface in which the local concentration of proteins is greater than that in the bulk medium. This concept explains many of the diverse effects of addition of poly(ethylene glycol) to the medium. It also can partially explain the requirement for serum to observe the poly(ethylene glycol) effect on the lymphocyte response to syngeneic tumor cells.  相似文献   

15.
Contribution of water to free energy of hydrolysis of pyrophosphate   总被引:2,自引:0,他引:2  
The energy of hydrolysis of phosphate compounds varies depending on whether they are in solution or bound to the catalytic site of enzymes. With the purpose of simulating the conditions at the catalytic site, the observed equilibrium constant for pyrophosphate hydrolysis (Kobsd) was measured in aqueous mixtures of dimethyl sulfoxide, ethylene glycol, or polymers of ethylene glycol. The reaction was catalyzed by yeast inorganic pyrophosphatase at 30 degrees C. All the cosolvents used promoted a decrease of Kobsd. Polymers of ethylene glycol were more effective than dimethyl sulfoxide or ethylene glycol in decreasing Kobsd. The higher the molecular weight of the polymer, the lower the value of Kobsd. A decrease in Kobsd from 346 M (delta G degree obsd = -3.5 kcal mol-1) to 0.1 M (delta G degree obsd = 1.3 kcal mol-1) was observed after the addition of 50% (w/v) poly(ethylene glycol) 8000 to a solution containing 0.9 mM MgCl2 and 1 mM Pi at pH 8.0. The association constants of Pi and pyrophosphate for H+ and Mg2+ were measured in presence of different ethylene glycol concentrations in order to calculate the Keq for hydrolysis of different ionic species of pyrophosphate. A decrease in all the Keq was observed. The results are interpreted according to the concept that the energy of hydrolysis of phosphate compounds depends on the different solvation energies of reactants and products.  相似文献   

16.
The influence of hetero-association on the precipitation of proteins by poly(ethylene glycol) was investigated by comparing the precipitation of binary mixtures to that of the individual proteins. Pronounced enhancement of precipitation was observed for several mixtures, with maximum effect at low ionic strength at a pH between the pI's. Measurements of sedimentation velocity and/or fluorescence polarization of dansyl-labeled components revealed that conditions fostering precipitation of a given mixture also enhanced the formation of soluble hetero-complexes in the absence of poly(ethylene glycol). Conversely, enhanced precipitation was not observed under conditions where complexes were shown to be absent. Poly(ethylene glycol) does not appear to influence such interactions and thus can be used to detect the presence of hetero-complexes in a binary mixture whose precipitation curve is shifted relative to those of its components.  相似文献   

17.
The catalytic activity, expressed as Km and Vmax values, of 16 enzymes of practical interest with the macromolecular coenzymes poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ and their low molecular weight precursors N6-(2-aminoethyl)-NAD+ and N6-(2-aminoethyl)-NADP+, was investigated. The enzymes examined are of direct interest for organic synthesis (i.e. alcohol dehydrogenase from yeast, horse liver, or Thermoanaerobium brockii, lactic dehydrogenase, and several hydroxysteroid dehydrogenases) or are used for the regeneration of NAD+, NADP+, NADH, or NADPH (i.e. glutamate dehydrogenase from liver or Proteus, formate dehydrogenase, glucose dehydrogenase, and malic enzyme). The cycling efficiency of poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ was examined with coupled-enzymes or coupled-substrates systems. Poly(ethylene glycol)-N6-(2-aminoethyl)-NAD+ and, even more so, poly(ethylene glycol)-N6-(2-aminoethyl)-NADP+ were excellent coenzymes with several dehydrogenases. In addition, the coenzymatic properties of N6-(3-sulfonatopropyl)-NAD+, an NAD+ derivative carrying a strong anionic group, were compared with those of the newly synthesized N6-(2-hydroxy-3-trimethylammonium propyl)-NAD+, an NAD+ derivative carrying a strong cationic group. It was expected that the presence of the sulfonic or quaternary ammonium group would enhance the residence time of the coenzyme inside continuous-flow reactors if membranes with anionic or cationic groups, respectively, were used.  相似文献   

18.
Extraction in two steps of glucoamylase was studied in poly(ethylene glycol) (PEG) and potassium phosphate systems at pH values of 6, 7 and 9. Ten different conditions using PEG 300, 600, 1500, 4000 and 6000 were studied. The bottom phase of the first extraction step, with the enzyme, was reused in an appropriate concentration of PEG to form the second extraction step. The optimal partitioning conditions for glucoamylase separation were obtained in PEG 4000 (first step), PEG 1500 (second step) at pH 7 and resulted in a three-fold increase in glucoamylase purification.  相似文献   

19.
Mechanism of poly(ethylene glycol) interaction with proteins   总被引:10,自引:0,他引:10  
T Arakawa  S N Timasheff 《Biochemistry》1985,24(24):6756-6762
Poly(ethylene glycol) (PEG) is one of the most useful protein salting-out agents. In this study, it has been shown that the salting-out effectiveness of PEG can be explained by the large unfavorable free energy of its interaction with proteins. Preferential interaction measurements of beta-lactoglobulin with poly(ethylene glycols) with molecular weights between 200 and 1000 showed preferential hydration of the protein for those with Mr greater than or equal to 400, the degree of hydration increasing with the increase in poly(ethylene glycol) molecular weight. The preferential interaction parameter had a strong cosolvent concentration dependence, with poly(ethylene glycol) 1000 having the sharpest decrease with an increase in concentration. The preferential hydration extrapolated to zero cosolvent concentration increased almost linearly with increasing size of the additive, suggesting steric exclusion as the major factor responsible for the preferential hydration. The poly(ethylene glycol) concentration dependence of the preferential interactions could be explained in terms of the nonideality of poly(ethylene glycol) solutions. All the poly(ethylene glycols) studied, when used at levels of 10-30%, decreased the thermal stability of beta-lactoglobulin, suggesting that caution must be exercised in the use of this additive at extreme conditions such as high temperature.  相似文献   

20.
Two fluorescence energy transfer assays for phospholipid vesicle-vesicle fusion have been developed, one of which is also sensitive to vesicle aggregation. Using a combination of these assays it was possible to distinguish between vesicle aggregation and fusion as induced by poly(ethylene glycol) PEG 8000. The chromophores used were 1-(4′-carboxyethyl)-6-diphenyl-trans-1,3,5-hexatriene as fluorescent ‘donor’ and 1-(4′-carboxyethyl)-6-(4″-nitro)diphenyl-trans-1,3,5-hexatriene as ‘acceptor’. These acids were appropriately esterified giving fluorescent phospholipid and triacylglycerol analogues. At 20°C poly(ethylene glycol) 8000 (PEG 8000) caused aggregation of l-α-dipalmitoylphosphatidylcholine (DPPC) vesicles without extensive fusion up to a concentration of about 35% (w/w). Fusion occurred above this poly(ethylene glycol) concentration. The triacylglycerol probes showed different behaviour from the phospholipids: while not exchangeable through solution in the absence of fusogen, they appeared to redistribute between bilayers under aggregating conditions. DPPC vesicles aggregated with < 35% poly(ethylene glycol) could not be disaggregated by dilution, as monitored by the phospholipid probes. However, DPPC vesicles containing approx. 5% phosphatidylserine which had been aggregated by poly(ethylene glycol) could be disaggregated by either dilution or sonication. Phospholipid vesicles aggregated by low concentrations of poly(ethylene glycol) appear to fuse to multilamellar structures on heating above the lipid phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号