首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) Tentacle retraction in the land slug Ariolimax columbianus can be elicited by stimulation of all nerves and connectives of the ipsi- and contralateral cerebral ganglia. (2) Six neurons in the left cerebral ganglion were classified as tentacle retraction motoneurons because their action potentials are followed one-for-one with constant delay by action potentials in the left tentacle retractor nerve and their depolarization causes retraction of the ipsilateral tentacle. The motoneurons can be identified by size, pattern of pigmentation, position, and physiological characteristics. (3) Each retractor motoneuron discharges at a rather constant rate and has more than one source of excitatory input, but no IPSPs were observed. No synaptic connections between the six retractor motoneurons were found. The nerve action potentials that correspond to each motoneurons are distinguishable by waveform and size rank. (4) Each motoneuron elicits visible contractions in a particular region of the ipsilateral retractor muscle, but the motor fields of some motoneurons overlap. Some motoneurons mediate relatively rapid contractions while others cause slower responses. (5) There is one-for-one correspondence between action potentials of the largest unit recorded extracellularly in the retractor nerve and exciatory junction potentials recorded from the retractor muscle. No evidence of a peripheral neural plexus was found in serial sections of the retractor muscle.  相似文献   

2.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

3.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

4.
1. In each right and left buccal ganglia of Aplysia kurodai, we identified 4 premotor neurons impinging on the ipsilateral jaw-closing and -opening motoneurons. Three of them (MA1 neurons) had features of multifunctional neurons. Current-induced spikes in the MA1 neurons produced excitatory junction potentials (EJPs) in the buccal muscle fibers. In addition, tactile stimulation of the buccal muscle surface produced a train of spikes in the MA1 neurons without synaptic input. The other neuron (MA2) had only a premotor function. 2. The MA1 and MA2 neurons had similar synaptic effects on the jaw-closing and -opening motoneurons. Current-induced spikes in the premotor neurons gave rise to monosynaptic inhibitory postsynaptic potentials (IPSPs) in the ipsilateral jaw-closing motoneurons. Simultaneously, spikes in one of the MA1 neurons and the MA2 also gave rise to monosynaptic excitatory postsynaptic potentials (EPSPs) in the ipsilateral jaw-opening motoneuron. 3. The IPSPs and the EPSPs induced by spikes in the premotor neurons were reversibly blocked by d-tubocurarine and hexamethonium, respectively, suggesting that the MA1 and MA2 neurons are cholinergic. 4. When depolarizing and hyperpolarizing current pulses were passed into one premotor neuron, attenuated but similar potential changes were produced in another randomly selected premotor neuron in the same ganglion, suggesting that they are electronically coupled.  相似文献   

5.
In insects, four types of motoneurons have long been known, including fast motoneurons, slow motoneurons, common inhibitory motoneurons, and DUM neurons. They innervate the same muscle and control its contraction together. Recent studies in Drosophila have suggested the existence of another type of motoneuron, the common excitatory motoneuron. Here, we found that shakB-GAL4 produced by labels this type of motoneuron in Drosophila larvae. We found that Drosophila larvae have two common excitatory motoneurons in each abdominal segment, RP2 for dorsal muscles and MNSNb/d-Is for ventral muscles. They innervate most of the internal longitudinal or oblique muscles on the dorsal or ventral body wall with type-Is terminals and use glutamate as a transmitter. Electrophysiological recording indicated that stimulation of the RP2 axon evoked excitatory junctional potential in a dorsal muscle.  相似文献   

6.
Summary The cerebral ventral giant cell ofPhiline exterts a selective presynaptic inhibitory modulatory action on the terminals of a buccal excitatory motoneuron in two buccal muscles. Other excitatory inputs to the muscles are not affected. The ventral giant cell also makes direct synaptic contacts on the fibres of the same muscles. In the retractor muscle M4, 5 the junction potentials are usually depolarising when measured in sea water, but in the fibres of M6 they may have either polarity. The mean membrane potential of the fibres of M4, 5 and M6 was –74.7±0.65 mV and –64±0.95 mV respectively. Depolarization of the muscles fibres by around 15 mV by immersion in 20 mM K saline abolished the junction potential in M4, 5 and converted the depolarizing potential in M6 to a hyperpolarizing response.It is concluded that the VGC junction potential results from an increase in membrane conductance to an ion with a reversal potential between –60 and –70 mV.  相似文献   

7.
We investigated the modulatory role of a radular mechanoreceptor (RM) in the feeding system of Incilaria. RM spiking induced by current injection evoked several cycles of rhythmic buccal motor activity in quiescent preparations, and this effect was also observed in preparations lacking the cerebral ganglia. The evoked rhythmic activity included sequential activation of the inframedian radular tensor, the supramedian radular tensor, and the buccal sphincter muscles in that order.In addition to the generation of rhythmic motor activity, RM spiking enhanced tonic activities in buccal nerve 1 as well as in the cerebrobuccal connective, showing a wide excitatory effect on buccal neurons. The excitatory effect was further examined in the supramedian radular tensor motoneuron. RM spiking evoked biphasic depolarization in the tensor motoneuron consisting of fast excitatory postsynaptic potentials and prolonged depolarization lasting after termination of RM spiking. These depolarizations also occurred in high divalent cation saline, suggesting that they were both monosynaptic.When RM spiking was evoked in the fictive rasp phase during food-induced buccal motor rhythm, the activity of the supramedian radular tensor muscle showed the greatest enhancement of the three muscles tested, while the rate of ongoing rhythmic motor activity showed no increase.Abbreviations CPG central pattern generator - EPSP excitatory postsynaptic potential - RBMA rhythmic buccal motor activity - RM radular mechanosensory neuron - SMT supramedian radular tensor neuron  相似文献   

8.
1.  Spikes in Aplysia MA1 neurons produced excitatory (EJPs), inhibitory (IJPs), and diphasic inhibitory-excitatory junction potentials in different fibers of the buccal muscles.
2.  The IJPs following the MA1 spikes were recorded in the muscle fibers innervated by the jaw-closing motoneurons. The depolarization of muscle fibers produced by the motoneurons was largely suppressed by simultaneous MA1 firing, suggesting that the MA1 neurons make a direct connection to a part of the muscle fibers innervated by these motoneurons and inhibit them.
3.  The excitatory and inhibitory components of the junction potentials produced by MA1 were reversibly blocked by hexamethonium and d-tubocurarine, respectively. In contrast, the EJPs produced by the jaw-closing motoneurons were blocked by an amino acid antagonist, suggesting that the MA1 neurons and the jaw-closing motoneurons use different transmitters in the nerve-muscle junctions.
4.  The jaw movement produced by the jaw-closing motoneurons was suppressed by simultaneous MA1 firing, and the suppression was released by d-tubocurarine, suggesting that the IJPs produced by MA1 may contribute to the suppression of jaw movement. The firing of MA1 produced the vertical movement of the buccal muscles, which was blocked by hexamethonium, suggesting that the EJPs produced by MA1 may contribute to the vertical movement.
  相似文献   

9.
Summary We used physiological recordings, intracellular dye injections and immunocytochemistry to further identify and characterize neurons in the buccal ganglia of Aplysia calif ornica expressing Small Cardioactive Peptide-like immunoreactivity (SCP-LI). Neurons were identified based upon soma size and position, input from premotor cells B4 and B5, axonal projections, muscle innervation patterns, and neuromuscular synaptic properties. SCP-LI was observed in several large ventral neurons including B6, B7, B9, B10, and B11, groups of s1 and s2 cluster cells, at least one cell located at a branch point of buccal nerve n2, and the previously characterized neurons B1, B2 and B15.B6, B7, B9, B10 and B11 are motoneurons to intrinsic muscles of the buccal mass, each displaying a unique innervation pattern and neuromuscular plasticity. Combined, these motoneurons innervate all major intrinsic buccal muscles (I1/I3, I2, I4, I5, I6). Correspondingly, SCP-LI processes were observed on all of these muscles. Innervation of multiple nonhomologous buccal muscles by individual motoneurons having extremely plastic neuromuscular synapses, represents a unique form of neuromuscular organization which is prevalent in this system. Our results show numerous SCPergic buccal motoneurons with widespread ganglionic processes and buccal muscle innervation, and support extensive use of SCPs in the control of feeding musculature.Abbreviations SCP-LI small cardioactive peptide-like immunoreactivity - PSC postsynaptic current - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - FI facilitation index - TMR time to maximal response  相似文献   

10.
1. Dopamine has been reported to exist in unusually large quantities in Aplysia gill. The physiological role of this neurotransmitter in this organ was examined. 2. The addition of dopamine to a gill perfusate results in the contractions of the lateral and medial external pinnule muscles, the circular and longitudinal muscles of the afferent vessel, and the circular muscles of the efferent vessel. 3. Dopamine-induced contractions persist after chemical synaptic transmission is eliminated in the gill. This suggests that excitatory dopamine receptors are present on gill smooth muscle fibers themselves. 4. Dopamine also potentiates the gill response to action potentials in single identified gill motoneurons. Evidence presented suggests that muscle contractions and modulation of motoneuron contractions are independent phenomena. 5. While modulation may in part be mediated by increases in excitatory junction potential (EJP) amplitude, in many cases large increases in muscle contractions occur while the enhancement of EJPs is disproportionately small. 6. Dopamine's ability to produce muscle contractions suggests that there may be dopaminergic motoneuron innervation of the gill. We suggest that dopamine's modulatory actions may be mediated via modification of excitation-contraction coupling in smooth muscle fibers.  相似文献   

11.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

12.
Persistent leg motoneurons of the moth Manduca sexta were investigated in larval and adult animals to compare their dendritic structures, intrinsic electrical properties and pattern of target innervation. The study focused on two identified motoneurons of the prothoracic leg. Despite the complete remodeling of leg muscles, the motoneurons innervated pretarsal flexor muscles in both larval and adult legs. Similarly, although the central dendrites regress and regrow, the branching pattern was similar with the exception of a prominent midline branch that was not present in the adult stage. The intrinsic electrical properties of the motoneurons differed between larval and adult stages. Larval motoneurons had significantly higher membrane input resistances and more depolarized resting membrane potentials than did motoneurons in pharate adults or adults. In all stages, one motoneuron had a low maximal firing frequency, whereas the second motoneuron, which innervated the other half of the muscle, had a high maximum firing frequency. Although the two motoneurons continued to innervate the same halves of the target muscle, their relative effects on muscular contraction were reversed during metamorphosis along with concomitant changes in intrinsic properties. Pretarsal flexor motoneurons in pharate adults (just prior to emergence) displayed properties similar to those in emerged adults. Accepted: 8 January 2000  相似文献   

13.
The prey capture phase of feeding behavior in the pteropod molluscClione limacina consists of an explosive extrusion of buccal cones, specialized oral appendages which are used to catch the prey, and significant acceleration of swimming. Several groups of neurons which control different components of prey capture behavior inClione have been previously identified in the CNS. However, the question of their coordination in order to develop a normal behavioral reaction still remains open. We describe here a cerebral interneuron which has wide-spread excitatory and inhibitory effects on a number of neurons in the cerebral and pedal ganglia, directed toward the initiation of prey capture behavior inClione. This bilaterally symmetrical neuron, designated Cr-PC (Cerebral interneuron initiating Prey Capture), produced monosynaptic activation of Cr-A motoneurons, which control buccal cone extrusion, and inhibition of Cr-B and Cr-L motoneurons, whose spike activities maintain buccal cones in a withdrawn position inside the head in non-feeding animals. In addition, Cr-PC produced monosynaptic activation of a number of swim motoneurons and interneurons of the swim central pattern generator (CPG) in the pedal ganglia, pedal serotonergic Pd-SW neurons involved in a peripheral modulation of swimming and the serotonergic Heart Excitor neuron.  相似文献   

14.
A functional analysis of the striated swim-bladder muscles engaged in the sound production of the toadfish has been performed by simultaneous recording of muscle action potentials, mechanical effects, and sound. Experiments with electrical nerve stimulation were made on excised bladder, while decerebrate preparations were used for studies of reflex activation of bladders in situ. The muscle twitch in response to a single maximal nerve volley was found to be very fast. The average contraction time was 5 msec. with a range from 3 to 8 msec., the relaxation being somewhat slower. The analysis of muscle action potentials with surface electrodes showed that the activity of the muscle fibers running transversely to the long axis of the muscle was well synchronized both during artificial and reflex activation. With inserted metal microelectrodes monophasic potentials of 0.4 msec. rise time and 1.2 to 1.5 msec. total duration were recorded. The interval between peak of action potential and onset of contraction was only 0.5 msec. Microphonic recordings of the characteristic sound effect accompanying each contraction showed a high amplitude diphasic deflection during the early part of the contraction. During relaxation a similar but smaller deflection of opposite phase could sometimes be distinguished above the noise level. The output from the microphone was interpreted as a higher order derivative function of the muscle displacement. This interpretation was supported by complementary experiments on muscle sound in mammalian muscle. The dependence of the sound effects on the rate of muscle contraction was demonstrated by changing the temperature of the preparation and, in addition, by a special series of experiments with repeated stimulation at short intervals. Results obtained by varying the pressure within the bladder provided further evidence for the view that the sound initiated in the muscle is reinforced by bladder resonance. Analysis of spontaneous grunts confirmed the finding of a predominant sound frequency of about 100 per second, which was also found in reflexly evoked grunts. During these, muscle action potentials of the same rate as the dominant sound frequency were recorded, the activity being synchronous in the muscles on both sides. Some factors possibly contributing to rapid contraction are discussed.  相似文献   

15.
A two-stage defense response was induced in the freshwater snailPlanorbarius corneus by stimulating the head. It consisted of the shell being rapidly lowered over the head and foot followed by the snail gradually withdrawing into its shell. These movements are performed by contracting the columellar muscle. Motoneurons of the columellar muscle were identified in the cerebral, parietal, and pedal ganglia. Stimulating the lip nerve was found to induce 2-stage excitation in motoneurons (responsible for the 2-stage muscular contraction) in preparations of central nervous system with the columellar muscle attached. The same 2-stage motoneuronal excitation can also occur spontaneously. This implies that defense reaction in the cell is at least partially a "fixed action" underlying a central mechanism or program and triggered by afferent stimuli. Activation of the central mechanism of defense response can also induce depolarization in certain columellar muscle motoneurons. This points to the existence of a feedback between neurons of the central mechanism and motoneurons.Institute of Research on Transmission of Information, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 786–795, November–December, 1990.  相似文献   

16.
(1) The musculature of the walking legs is analysed with regard to both morphology and function in the scorpion, Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida), and selected other species. Conspicuous features are multipartite muscles, muscles spanning two joints, and partial lack of antagonistic muscles. The muscle arrangement is compared to that in the walking limbs of other Arthropoda and possible phylogenetic implications are discussed. (2). Histochemical characterisation of selected leg muscles indicates that these are composed of layers of slow, intermediate and fast muscle fibres. Anti-GABA immunohistochemistry shows that mainly the intermediate fibres receive innervation from putative inhibitory motoneurons. (3). Intracellular recording from muscle fibres reveals both excitatory and inhibitory muscle innervation. Individual muscle fibres may receive input from more than one inhibitory motoneuron, as indicated by different IPSP amplitudes. (4). The motoneuron supply of the leg muscles is analysed by retrograde fills of motor nerves. The general arrangement of leg motoneurons in the central nervous system and motoneuron anatomy conforms to the situation in pterygote insects and decapod crustaceans. For example, there are an anterior and a posterior group of leg motoneurons in each hemineuromere, and two contralateral somata near the ganglion midline. Between 12 and 20 motoneurons are found to supply each muscle. Most motoneuron cell bodies supplying a given muscle are arranged in a single cluster with a specific location.  相似文献   

17.
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.  相似文献   

18.
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
1. Transmitters of motoneurons in the stomatogastric ganglion (STG) of Squilla were identified by analyzing the excitatory neuromuscular properties of muscles in the posterior cardiac plate (pcp) and pyloric regions. 2. Bath and iontophoretic applications of glutamate produce depolarizations in these muscles. The pharmacological experiments and desensitization of the junctional receptors elucidate the glutamatergic nature of the excitatory junctional potentials (EJPs) evoked in the constrictor and dilator muscles. The reversal potentials for the excitatory junctional current (EJC) and for the glutamate-induced current are almost the same. 3. Some types of dilator muscle show sensitivity to both glutamate and acetylcholine (ACh) exogenously applied. The pharmacological evidence and desensitization of the junctional receptors indicate the glutamatergic nature of neuromuscular junctions in these dually sensitive muscles. The reversal potentials for the EJC and for the ACh-induced current are not identical. 4. Glutamate is a candidate as an excitatory neuro-transmitter at the neuromuscular junctions which the STG motoneurons named PCP, PY, PD, LA and VC make with the identified muscles. Kainic and quisqualic acids which act on glutamate receptors are potent excitants of these muscles. Extrajunctional receptors to ACh are present in two types of the muscle innervated by LA and VC. 5. Neurotransmitters used by the STG motoneurons of stomatopods are compared to those of decapods.  相似文献   

20.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号