首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. C. Wong 《Oecologia》1979,44(1):68-74
Summary Cotton and maize plants were grown under full sunlight in glass houses containing normal ambient partial pressure of CO2 (330±20 bar) and enriched partial pressure of CO2 (640 ±15 bar) with four levels of nitrogen nutrient. In 40 day old cotton plants grown in high CO2, there was a 2-fold increase in day weight and a 1.6-fold increase in leaf area compared with plants grown in ambient CO2. In 30 day old maize plants there was only 20% increase in dry weight in plants grown in 640 bar CO2 compared with plants grown in 330 bar and no significant increase in leaf area. In both species, at both CO2 treatments, dry weight and leaf area decreased in similar proportion with decreased nitrogen nutrient.The increase of leaf area in cotton plants at high CO2 caused a reduction of total nitrogen on a dry weight basis. In cotton assimilation rate increased 1.5 fold when plants were grown with high nitrogen and high CO2. The increase was less at lower levels of nitrate nutrient. There was a 1.2 fold increase in assimilation rate in maize grown at high CO2 with high nitrate nutrient.Cotton and maize grown in high CO2 had a lower assimilation rate in ambient CO2 compared to plants grown in normal ambient air. This difference was due to the reduction in RuBP carboxylase activity. Water use efficiency was doubled in both cotton and maize plants grown at high CO2 in all nutrient treatments. However, this increase in water use efficiency was due primarily to reduced transpiration in some treatments and to increased assimilation in others. These data show that plant responses to elevated atmospheric partial pressure of CO2 depend on complex of partially compensatory processes which are not readily predictable.  相似文献   

2.
A common observation in plants grown in elevated CO2 concentration is that the rate of photosynthesis is lower than expected from the dependence of photosynthesis upon CO2 concentration in single leaves of plants grown at present CO2 concentration. Furthermore, it has been suggested that this apparent down regulation of photosynthesis may be larger in leaves of plants at low nitrogen supply than at higher nitrogen supply. However, the available data are rather limited and contradictory. In this paper, particular attention is drawn to the way in which whole plant growth response to N supply constitutes a variable sink strength for carbohydrate usage and how this may affect photosynthesis. The need for further studies of the acclimation of photosynthesis at elevated CO2 in leaves of plants whose N supply has resulted in well-defined growth rate and sink activity is emphasised, and brief consideration is made of how this might be achieved.Abbreviations A rate of CO2 assimilation - Ci internal CO2 concentration - PCR photosynthetic carbon reduction - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

3.
The capacity for photosynthesis is often affected when plants are grown in air with elevated CO2 partial pressure. We grew Phaseolus vulgaris L. in 35 and 65 Pa CO2 and measured photosynthetic parameters. When assayed at the growth CO2 level, photosynthesis was equal in the two CO2 treatments. The maximum rate of ribulose-1,5-bisphosphate (RuBP) consumption was lower in plants grown at 65 Pa, but the CO2 partial pressure at which the maximum occurred was higher in the high-CO2-grown plants, indicating acclimation to high CO2. The acclimation of RuBP consumption to CO2 involved a reduction of the activity of RuBP carboxylase which resulted from reduced carbamylation, not a loss of protein. The rate of RuBP consumption declined with CO2 when the CO2 partial pressure was above 50Pa in plants grown under both CO2 levels. This was caused by feedback inhibition as judged by a lack of response to removing O2 from the air stream. The rate of photosynthesis at high CO2 was lower in the high-CO2-grown plants and this was correlated with reduced activity of sucrose-phosphate synthase. This is only the second report of O2-insensitive photosynthesis under growth conditions for plants grown in high CO2.  相似文献   

4.
Elevated atmospheric carbon dioxide partial pressures have been shown to have variable direct and indirect effects on plant respiration rates. In this study, growth, leaf respiration, and leaf nitrogen and carbohydrate partitioning were measured in Gossypium hirsutum L. grown in 35 and 65 Pa CO2 for 30d. Growth and maintenance coefficients of leaf respiration were estimated using gas exchange techniques both at night and during the day. Elevated CO2 stimulated biomass production (107%) and net photo-synthetic rates (35–50%). Total day-time respiration (Rd) was not significantly affected by growth CO2 partial pressure. However, night respiration (Rn) of leaves grown in 65 Pa CO2 was significantly greater than that of plants grown in 35 Pa CO2. Correlation of Rd and Rn with leaf expansion rates indicated that plants in both CO2 treatments had equivalent growth respiration coefficients but maintenance respiration was significantly greater in elevated CO2. Increased maintenance coefficients in elevated CO2 appeared to be related to increased starch accumulation rather than to changes in leaf nitrogen.  相似文献   

5.
We grew loblolly and ponderosa pine seedlings in a factorial experiment with two CO2 partial pressures (35 and 70 Pa), and two nitrogen treatments (1.0 and 3.5 mol m?3 NH4+), for one growing season to examine the effects of carbon and nitrogen availability on leaf construction cost. Growth in elevated CO2 reduced leaf nitrogen concentrations by 17 to 40%, and increased C:N by 22 to 68%. Elevated N availability increased leaf N concentrations and decreased C:N. Non-structural carbohydrates increased in high-CO2-grown loblolly seedlings, except in fascicles from low N, and in ponderosa primary and fascicle leaves grown in high N. In loblolly, increases in starch were nearly 2-fold greater than the increases in soluble sugars. In ponderosa, only the soluble sugars were affected by CO2. Leaf construction cost (g glucose g?1 dm) varied by 9.3% across all treatments. All of the variation in loblolly leaf construction cost could be explained by changes in non-structural carbohydrates. A model of the response of construction cost to changes in the mass of different biochemical fractions suggests that the remainder of the variation in ponderosa, not explained by non-structural carbohydrates, is probably attributable to changes in lignin, phenolic or protein concentrations.  相似文献   

6.
Experiments were performed to determine if growth at elevated partial pressure of CO2 altered the sensitivity of leaf water vapour conductance and rate of CO2 assimilation to the leaf-to-air difference in the partial pressure of water vapour (Δw). Comparisons were made between plants grown and measured at 350 and 700 μPa Pa?1 partial pressures of CO2 for amaranth, soybean and sunflower grown in controlled environment chambers, soybean grown outdoors in pots, and orchard grass grown in field plots. In amaranth, soybean and orchard grass, both the absolute and the relative sensitivity of conductance to Δw at the leaf surface were less in plants grown and measured at the elevated CO2. In sunflower, there was no change in the sensitivity of conductance to Δw for the two CO2 partial pressures. Tests in soybeans and amaranth showed that the change in sensitivity resulted from elevated CO2 during the measurement of the Δw response. Assimilation rate of CO2 was not altered by Δw in amaranth, which has C4 metabolism. In sunflower, the assimilation rate of plants grown and measured at elevated CO2 was insensitive to Δw, consistent with the response of assimilation rate to intercellular CO2 partial pressure in the prevailing range. In soybean, the sensitivity of assimilation rate to Δw was not different between CO2 treatments, in contrast to what would be expected from the response of assimilation rate to intercellular CO2 partial pressure.  相似文献   

7.
Photosynthetic rates and photosynthate partitioning were studied in three-week-old soybean [Glycine max (L.) Merr. cv. Williams] plants exposed to either ambient (35 Pa) or elevated (70 Pa) CO2 in controlled environment chambers. Ambient CO2-grown plants also were given a single 24 h treatment with 70 Pa CO2 1 d prior to sampling. Photosynthetic rates of ambient CO2-grown plants initially increased 36% when the measurement CO2 was doubled from 35 to 70 Pa. Photosynthetic rates of the third trifoliolate leaf, both after 1 and 21 d of elevated CO2 treatment, were 30 to 45% below those of ambient CO2-grown plants when measured at 35 Pa CO2. These reduced photosynthetic rates were not due to increased stomatal resistance and were observed for 2 to 8 h after plants given 1 d of CO2 enrichment were returned to ambient CO2. Initial and total ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities, percent activation, Rubisco protein, soluble protein and leaf chlorophyll content were similar in all CO2 treatments. Quantum yields of photosynthesis, determined at limiting irradiances and at 35 Pa CO2, were 0.049±0.003 and 0.038±0.005 mol CO2 fixed per mol quanta for ambient and elevated CO2-grown plants, respectively (p<0.05). Leaf starch and sucrose levels were greater in plants grown at 70 than at 35 Pa CO2. Starch accumulation rates during the day were greater in ambient CO2-grown plants than in plants exposed to elevated CO2 for either 1 or 21 d. However, the percentage of C partitioned to starch relative to total C fixed was unaffected by 1 d of CO2 enrichment. The above results showed that both photosynthetic and starch accumulation rates of soybean leaflets measured at 35 Pa CO2 were temporarily reduced after 1 and 21 d of CO2 enrichment. The biochemical mechanism affecting these responses was not identified.Abbreviations SLW- specific leaf weight (g m–2) - Rubisco- ribulose 1,5-bisphosphate carboxylase/oxygenase - Rul- 5bisP, ribulose 1,5 bisphosphate - DAP- days after planting - SAR- starch accumulation rate - Ci- intercellular CO2 concentration  相似文献   

8.
E. D. Fajer 《Oecologia》1989,81(4):514-520
Summary Little is known about the effects of enriched CO2 environments, which are anticipated to exist in the next century, on natural plant-insect herbivore interactions. To begin to understand such effects on insect growth and survival, I reared both early and penultimate instar larvae of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae), on leaves from one of their major hostplants, plantain, Plantago lanceolata (Plantaginaceae), grown in either ambient (350 PPM) or high (700 PPM) CO2 atmospheres. Despite consuming more foliage, early instar larvae experienced reduced growth on high CO2-grown compared to ambient CO2-grown leaves. However, survivorship of early instar larvae was unaffected by the CO2 treatment. Larval weight gain was positively correlated with the nitrogen concentration of the plant material and consumption was negatively correlated with foliar nitrogen concentration, whereas neither larval weight gain nor consumption were significantly correlated with foliar water or allelochemical concentrations. In contrast, penultimate instar larvae had similar growth rates on ambient and high CO2-grown leaves. Significantly higher consumption rates on high CO2-grown plants enabled penultimate instar larvae to obtain similar amounts of nitrogen in both treatments. These larvae grew at similar rates on foliage from the two CO2 treatments, despite a reduced efficiency of conversion of ingested food (ECI) on the low nitrogen, high CO2-grown plants. However, nitrogen utilization efficiencies (NUE) were unaffected by CO2 treatment. Again, for late instar larvae, consumption rates were negatively correlated with foliar nitrogen concentrations, and ECI was also very highly correlated with leaf nitrogen; foliar water or allelochemical concentrations did not affect either of these parameters. Differences in growth responses of early and late instar larvae to lower nitrogen, high-CO2 grown foliage may be due to the inability of early instar larvae to efficiently process the increased flow of food through the gut caused by additional consumption of high CO2 foliage.  相似文献   

9.
Phosphorus-deficient spinach plants were grown by transferring them to nutrient solutions without PO4. Photosynthetic rates were measured at a range of intercellular CO2 partial pressures from 50–500 bar and then the leaves were freeze-clamped in situ to measure ribulose bisphosphate carboxylase (Rubisco) activity and metabolite concentrations. Compared with control leaves, deficient leaves had significantly lower photosynthetic rates, percentage activation of Rubisco, and amounts of ribulose bisphosphate and 3-phosphoglycerate at all CO2 partial pressures. After feeding 10 mM PO4 to the petioles of detached deficient leaves, all these measurements increased within 2 hours. At atmospheric CO2 partial pressure the photosynthetic rate was stimulated in 19 mbar O2 compared with 200 mbar. At higher CO2 partial pressures this stimulation was less but the percentage stimulation in deficient leaves was no different from controls in either CO2 partial pressure. It was concluded that phosphorus deficiency affects both Rubisco activity and the capacity for ribulose bisphosphate regeneration, and possible causes are discussed.Abbreviations A CO2 assimilation rate - Ci intercellular CO2 partial pressure - PGA 3-phosphoglycerate - RuP2 ribulose 1,5-bisphosphate - Rubisco RuP2 carboxylase/oxygenase  相似文献   

10.
To test whether different nitrogen form (nitrate or ammonium) in substrate can alter the response to elevated partial pressure of CO2 (pCO2) plants of perennial ryegrass (Lolium perenne cv. Bastion) were grown from seeds in growth chambers under pCO2 of either 35 Pa (ambient, CA) or 70 Pa (elevated, CE) in a hydroponic system (with nutrient and pH control) for 24 d. Nitrogen was supplied as ammonium, nitrate or an equimolar mixture of both N forms. Under CE plants grew faster than their counterparts under CA during the first 14 d but after 23 d of cultivation stimulation disappeared. Despite the strong positive effect of mixed forms of N on plant growth, the beneficial effect of CE was similar to that in the other two N treatments. However, the almost alike final growth response to CE had different underlying mechanisms in different N treatments. Plants supplied with nitrate as a sole source of nitrogen had lower leaf mass ratio but much higher specific leaf area compared to plants supplied with ammonium. The decrease in the content of leaf organic N (per unit of structural dry mass) under CE was found only in leaves of plants supplied with ammonium on day 14. Nevertheless, the available form of N evidently contributes to changes of leaf N content under CE. The high levels of N and non-structural saccharides in plants supplied with ammonium at CE suggest that the CO2 response of these plants was controlled by factors other than amount of available carbon and nitrogen.  相似文献   

11.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

12.
Evans JR 《Plant physiology》1983,72(2):297-302
Wheat (Triticum aestivum L. cv Yecora 70) plants were grown with various concentrations of nitrate nitrogen available to the roots. Sampling of flag leaves began after they had reached full expansion and continued throughout senescence. Rates of gas exchange, ribulose-1,5-bisphosphate (RuP2) carboxylase activity, and the amounts of chlorophyll, soluble protein, nitrogen, and phosphorus were determined for each flag leaf. Rate of CO2 assimilation was uniquely related to total leaf nitrogen irrespective of nutrient treatment, season, and leaf age. Assimilation rate increased with leaf nitrogen, but the slope of the relationship declined markedly when leaf nitrogen exceeded 125 millimoles nitrogen per square meter. Chlorophyll content and RuP2 carboxylase activity were approximately proportional to leaf nitrogen content. As leaves aged, RuP2 carboxylase activity and calculated Hill activity declined in parallel. With normal ambient partial pressure of CO2, the intercellular partial pressure of CO2 was always such that rate of assimilation appeared colimited by RuP2 carboxylation and RuP2 regeneration capacity.

The initial slope of rate of CO2 assimilation against intercellular partial pressure of CO2 varied nonlinearly with carboxylase activity. It is suggested that this was due to a finite conductance to CO2 diffusion in the wall and liquid phase which causes a drop in CO2 partial pressure between the intercellular spaces and the site of carboxylation. A double reciprocal plot was used to obtain an estimate of the transfer conductance.

  相似文献   

13.
Wong  Suan-Chin 《Plant Ecology》1993,(1):211-221
Cotton plants (Gossypium hirsutum L. var Deltapine 90) and radish plants (Raphanus sativus L var Round Red) were grown under full sunlight using a factorial combination of atmospheric CO2 concentrations (350 µmol mol-1 and 700 µmol mol-1) and humidities (35% and 90% RH at 32 °C during the day). Cotton plants showed large responses to increased humidity and to doubled CO2. In cotton plants, the enhanced dry matter yield due to doubled CO2 concentration was 1.6-fold greater at low humidity than at high humidity. Apart from the direct effect of elevated CO2 level on photosynthesis, the greater effect of doubled CO2 concentration on dry matter yield at low humidity was probably due to: (1) increased leaf water potential caused by reduction of transpiration resulting from the negative CO2 response of stomata to increased CO2 concentration the consequence being greater leaf area expansion; (2) reduction of CO2 assimilation rate at low humidity and normal CO2 concentration as a result of humidity response of stomata causing reduction of intercellular CO2 concentration. In contrast, apart from the very early stage of development, radish plants do not respond to increased humidity but had a relatively large response to doubled CO2 concentration. Furthermore, due to the determinate growth pattern as well as having a prominent storage root, the extra photoassimilate derived at doubled CO2 level is allocated to the storage root.Abbreviatios DAE day after emergence - LAD leaf areal density (leaf dry weight/leaf area) - LAR leaf area ratio (leaf area/plant dry weight) - NAR net assimilation rate - ci internal CO2 concentration - PPFD photosynthetic photon flux density - RGR relative growth rate - RLAGR relative leaf area growth rate - VPD vapour pressure deficit  相似文献   

14.
Plants grown at elevated CO2 often acclimate such that their photosynthetic capacities are reduced relative to ambient CO2-grown plants. Reductions in synthesis of photosynthetic enzymes could result either from reduced photosynthetic gene expression or from reduced availability of nitrogen-containing substrates for enzyme synthesis. Increased carbohydrate concentrations resulting from increased photosynthetic carbon fixation at elevated CO2 concentrations have been suggested to reduce the expression of photosynthetic genes. However, recent studies have also suggested that nitrogen uptake may be depressed by elevated CO2, or at least that it is not increased enough to keep pace with increased carbohydrate production. This response could induce a nitrogen limitation in elevated-CO2 plants that might account for the reduction in photosynthetic enzyme synthesis. If CO2 acclimation were a response to limited nitrogen uptake, the effects of elevated CO2 and limiting nitrogen supply on photosynthesis and nitrogen allocation should be similar. To test this hypothesis we grew non-nodulating soybeans at two levels each of nitrogen and CO2 concentration and measured leaf nitrogen contents, photosynthetic capacities and Rubisco contents. Both low nitrogen and elevated CO2 reduced nitrogen as a percentage of total leaf dry mass but only low nitrogen supply produced significant decreases in nitrogen as a percentage of leaf structural dry mass. The primary effect of elevated CO2 was to increase non-structural carbohydrate storage rather than to decrease nitrogen content. Both low nitrogen supply and elevated CO2 also decreased carboxylation capacity (Vcmax) and Rubisco content per unit leaf area. However, when Vcmax and Rubisco content were expressed per unit nitrogen, low nitrogen supply generally caused them to increase whereas elevated CO2 generally caused them to decrease. Finally, elevated CO2 significantly increased the ratio of RuBP regeneration capacity to Vcmax whereas neither nitrogen supply nor plant age had a significant effect on this parameter. We conclude that reductions in photosynthetic enzyme synthesis in elevated CO2 appear not to result from limited nitrogen supply but instead may result from feedback inhibition by increased carbohydrate contents.  相似文献   

15.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

16.
Rising levels of atmospheric CO2 will have profound, direct effects on plant carbon metabolism. In this study we used gas exchange measurements, models describing the instantaneous response of leaf net CO2 assimilation rate (A) to intercellular CO2 partial pressure (Ci), in vitro enzyme activity assay, and carbohydrate assay in order to investigate the photosynthetic responses of wheat (Triticum aestivum L., cv. Wembley) to growth under elevated partial pressures of atmospheric CO2 (Ca). At flag leaf ligule emergence, the modelled, in vivo, maximum carboxylation velocity for RuBisCO was significantly lower in plants grown at elevated Ca than in plants grown at ambient Ca (70 Pa compared with 40 Pa). By 12 d after ligule emergence, no significant difference in this parameter was detectable. At ligule emergence, plants grown at elevated Ca exhibited reduced in vitro initial activities and activation states of RuBisCO. At their respective growth Ci values, the photosynthesis of 40-Pa-grown plants was sensitive to p(O2) and to p(CO2) whereas that of 70-Pa-grown plants was insensitive. Both sucrose and starch accumulated more rapidly in the leaves of plants grown at 70 Pa. At flag leaf ligule emergence, modelled non-photorespiratory respiration in the light (Rd) was significantly higher in 70-Pa-grown plants than in 40-Pa-grown plants. By 12 d after ligule emergence no significant differences in Rd were detectable.  相似文献   

17.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.  相似文献   

18.
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species   总被引:39,自引:0,他引:39  
Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.Abbreviations RuP2 ribulose bisphosphate - PGA 3-phosphoglycerate - C=p(CO2) partial pressure of CO2 - O=p(O2) partial pressure of O2 - PCR photosynthetic carbon reduction - PCO photorespiratory carbon oxidation  相似文献   

19.
Seedlings of loblolly pine (Pinus taeda L.) were grown under varying conditions of soil nitrogen and atmospheric carbon dioxide availability to investigate the interactive effects of these resources on the energetic requirements for leaf growth. Increasing the ambient CO2 partial pressure from 35 to 65 Pa increased seedling growth only when soil nitrogen was high. Biomass increased by 55% and photosynthesis increased by 13% after 100 days of CO2 enrichment. Leaves from seedlings grown in high soil nitrogen were 7.0% more expensive on a g glucose g–1 dry mass basis to produce than those grown in low nitrogen, while elevated CO2 decreased leaf cost by 3.5%. Nitrogen and CO2 availability had an interactive effect on leaf construction cost expressed on an area basis, reflecting source-sink interactions. When both resources were abundant, leaf construction cost on an area basis was relatively high (81.8±3.0 g glucose m–2) compared to leaves from high nitrogen, low CO2 seedlings (56.3±3.0 g glucose m–2) and low nitrogen, low CO2 seedlings (67.1±2.7 g glucose m–2). Leaf construction cost appears to respond to alterations in the utilization of photoassimilates mediated by resource availability.  相似文献   

20.
Rates of CO2 assimilation and leaf conductances to CO2 transfer were measured in plants of Zea mays during a period of 14 days in which the plants were not rewatered, and leaf water potential decreased from −0.5 to −8.0 bar. At any given ambient partial pressure of CO2, water stress reduced rate of assimilation and leaf conductance similarly, so that intercellular partial pressure of CO2 remained almost constant. At normal ambient partial pressure of CO2, the intercellular partial pressure of CO2 was estimated to be 95 microbars. This is the same as had been estimated in plants of Zea mays grown with various levels of nitrogen supply, phosphate supply and irradiance, and in plants of Zea mays examined at different irradiances.

After leaves of Phaseolus vulgaris L. and Eucalyptus pauciflora Sieb. ex Spreng had been exposed to high irradiance in an atmosphere of CO2-free N2 with 10 millibars O2, rates of assimilation and leaf conductances measured in standard conditions had decreased in similar proportions, so that intercellular partial pressure of CO2 remained almost unchanged. As the conductance of each epidermis that had not been directly irradiated had declined as much as that in the opposite, irradiated surface it was hypothesized that conductance may have been influenced by photoinhibition within the mesophyll tissue.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号