首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An affinity matrix (Sepharose 6B-divinyl sulfone-pentaphosphomannan) has been developed which can be efficiently used for the purification of the MPR 215 from different tissues of rat as well as from goat liver. The matrix developed is relatively easy to prepare compared with the available procedures, and can be used for the purification of similar receptor proteins from other sources.  相似文献   

2.
The GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) are a multidomain family of proteins implicated in protein trafficking between the Golgi and endosomes. Recent evidence has established that the cation-independent (CI) and cation-dependent (CD) mannose 6-phosphate receptors (MPRs) bind specifically to the VHS domains of the GGAs through acidic cluster-dileucine motifs at the carboxyl ends of their cytoplasmic tails. However, the CD-MPR binds the VHS domains more weakly than the CI-MPR. Alignment of the C-terminal residues of the two receptors revealed a number of non-conservative differences in the acidic cluster-dileucine motifs and the flanking residues. Mutation of these residues in the CD-MPR cytoplasmic tail to the corresponding residues in the CI-MPR conferred either full binding (H63D mutant), intermediate binding (R60S), or unchanged binding (E56F/S57H) to the GGAs as determined by in vitro glutathione S-transferase pull-down assays. Furthermore, the C-terminal methionine of the CD-MPR, but not the C-terminal valine of the CI-MPR, inhibited GGA binding. Addition of four alanines to the C-terminal valine of the CI-MPR also severely reduced GGA binding, demonstrating the importance of the spacing of the acidic cluster-dileucine motif relative to the C terminus for optimal GGA interaction. Mouse L cells stably expressing CD-MPRs with mutations that enhance GGA binding sorted cathepsin D more efficiently than wild-type CD-MPR. These studies provide an explanation for the observed differences in the relative affinities of the two MPRs for the GGA proteins. Furthermore, they indicate that the GGAs participate in lysosomal enzyme sorting mediated by the CD-MPR.  相似文献   

3.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

4.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

5.
Mannose 6-phosphate receptor proteins mediate transport of lysosomal enzymes to lysosomes in eukaryotes. Two receptors designated as MPR 300 and MPR 46 based on their apparent molecular mass have been well studied from human and bovine liver. In humans, it has been shown that the receptors are present in different concentrations in different tissues. In the present study, MPR 300 and MPR 46 were purified from goat liver by phosphomannan affinity chromatography, and polyclonal antibodies were raised in rabbits. MPR 300 receptor specific antibodies have been purified from the antiserum using a goat-MPR 300-receptor gel. Using this affinity-purified antibody and the antiserum to goat MPR 46, as well as an affinity-purified MSC1 antibody that is specific for MPR 46, we developed an ELISA method to quantify both the receptors. The receptors could be measured in the concentration range of 1-10 ng using ELISA. The receptors could be quantified from membrane extracts of different tissues of goat and chicken using this method.  相似文献   

6.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

7.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

8.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

9.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

10.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

11.
The first indication that the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M6PR) is developmentally regulated came from studies of the serum form of the receptor in the rat. By immunoblotting, the circulating form of the receptor, which was 10 kDa smaller than the tissue receptor, was high in 19 day fetal and 3, 10, and 20 day postnatal sera and then declined sharply. We next used quantitative immunoblotting to measure the total tissue IGF-II/M6PR in the rat. The receptor levels were high in fetal tissues and in most tissues declined dramatically in late gestation and/or in the early postnatal period. The rank order of receptor expression was heart > placenta > lung = intestine > muscle = kidney > liver > brain. In heart, the receptor was 1.7% of total protein in the extract. More recently, we have examined the expression of IGF-II/M6PR mRNA using Northern blotting and a solution hybridization/RNase protection assay. The rank order of receptor mRNA concentration among fetal tissues agreed with the rank order of receptor protein. The concentration of receptor mRNA was significantly lower in postnatal tissue than in fetal tissue. Thus IGF-II/M6PR mRNA concentration is an important determinant of receptor protein in most tissues. What is the function of the IGF-II/M6PR in embryonic and fetal tissues? The M6PR in birds and frogs does not bind IGF-II. It is intriguing that the rat IGF-II/M6PR is prominent during the embryonic and fetal periods, times at which the differences between mammals, on the one hand, and frogs and birds, on the other, are most striking. Tissue remodeling is an important feature of embryonic and fetal development. Therefore, the well-established lysosomal enzyme targeting function of the receptor may be of particular importance. Since IGF-II can inhibit the cellular uptake of lysosomal enzymes via the IGF-II/M6PR, IGF-II may modulate this lysosomal enzyme targeting function. In addition, the receptor can provide a degradative pathway for IGF-II by receptor-mediated internalization. Thus the receptor could provide a check on the high levels of IGF-II known to be present in the fetus. Finally, the IGF-II/M6PR could directly signal certain biologic responses to IGF-II. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

13.
Mannose 6-phosphate receptors (MPRs) play an important role in the targeting of newly synthesized soluble acid hydrolases to the lysosome in higher eukaryotic cells. These acid hydrolases carry mannose 6-phosphate recognition markers on their N-linked oligosaccharides that are recognized by two distinct MPRs: the cation-dependent mannose 6-phosphate receptor and the insulin-like growth factor II/cation-independent mannose 6-phosphate receptor. Although much has been learned about the MPRs, it is unclear how these receptors interact with the highly diverse population of lysosomal enzymes. It is known that the terminal mannose 6-phosphate is essential for receptor binding. However, the results from several studies using synthetic oligosaccharides indicate that the binding site encompasses at least two sugars of the oligosaccharide. We now report the structure of the soluble extracytoplasmic domain of a glycosylation-deficient form of the bovine cation-dependent mannose 6-phosphate receptor complexed to pentamannosyl phosphate. This construct consists of the amino-terminal 154 amino acids (excluding the signal sequence) with glutamine substituted for asparagine at positions 31, 57, 68, and 87. The binding site of the receptor encompasses the phosphate group plus three of the five mannose rings of pentamannosyl phosphate. Receptor specificity for mannose arises from protein contacts with the 2-hydroxyl on the terminal mannose ring adjacent to the phosphate group. Glycosidic linkage preference originates from the minimization of unfavorable interactions between the ligand and receptor.  相似文献   

14.
An affinity-purified rabbit antibody against rat liver mannose 6- phosphate receptor (MP-R) was prepared. The antibody was directed against a 215 kd-polypeptide and it recognized both ligand-occupied and free receptor. Anti-MP-R was used for immunofluorescence and immunoelectron microscopy of cryosections from rat liver. MP-R was demonstrated in all parenchymal liver cells, but not in endothelial lining cells. MP-R labeling was found at the entire plasma membrane, in coated pits and coated vesicles, in the compartment of uncoupling receptor and ligand, and in the Golgi complex. Lysosomes showed only scarce MP-R label. In double-labeling immunoelectron microscopy, MP-R co-localized with albumin in the Golgi cisternae and in secretory vesicles with lipoprotein particles. Cathepsin D was associated with MP- R in the Golgi cisternae. This finding indicates that MP-R/cathepsin D complexes traverse the Golgi complex on their way to the lysosomes. The possible involvement of CURL in lysosomal enzyme targeting is discussed.  相似文献   

15.
We have isolated and sequenced cDNA clones encoding the entire sequence of the bovine cation-independent mannose 6-phosphate receptor. The deduced 2499-amino acid precursor has a calculated molecular mass of 275 kDa. Analysis of the sequence indicates that the protein has a 44-residue amino-terminal signal sequence, a 2269-residue extracytoplasmic region, a single 23-residue transmembrane region, and a 163-residue carboxyl-terminal cytoplasmic region. The extra-cytoplasmic region consists of 15 contiguous repeating domains, one of which contains a 43-residue insertion that is similar to the type II repeat of fibronectin. The 15 domains have an average size of 147 amino acids and a distinctive pattern of 8 cysteine residues. Alignment of the 15 domains and the extracytoplasmic domain of the cation-dependent mannose 6-phosphate receptor shows that all have sequence similarities and suggests that all are homologous.  相似文献   

16.
The cation-independent mannose 6-phosphate receptor (215,000 daltons) was isolated from embryonic bovine tracheal cells and embryonic human skin fibroblasts labelled with [3H]palmitic acid. The tritium label was detected in the protein upon fluorographic analysis of SDS-polyacrylamide gels of the purified receptor. The label was not sensitive to hydroxylamine, methanolic KOH, or beta-mercaptoethanol, but labelled fatty acid was recovered from the protein by acidic methanolysis. Labelled receptor protein could not be isolated from cells grown in the presence of [3H]myristic acid. The results suggest the presence of amide-linked palmitic acid in the structure of the cation-independent mannose 6-phosphate receptor.  相似文献   

17.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.  相似文献   

18.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars.  相似文献   

19.
We previously reported that insulin-like growth factor-II (IGF-II) stimulates both calcium influx and DNA synthesis by acting on the cell surface IGF-II receptor (IGF-IIR) in a manner sensitive to pertussis toxin, and recently demonstrated that IGF-II binding to the IGF-IIR gives rise to functional changes of purified Gi-2, a GTP-binding protein (G protein) in phospholipid vesicles as well as in broken cell membranes. On the other hand, a variety of evidence indicates that the IGF-IIR binds mannose 6-phosphate (man6P) with high affinity probably at a receptor extracellular region different from the IGF-II-binding site. In the present study, we examined whether man6P stimulation of the IGF-IIR evokes the activation of Gi-2 in phospholipid vesicles and in native cell membranes. In vesicles reconstituted with purified rat IGF-IIR and bovine Gi-2, man6P did not stimulate GDP dissociation from Gi-2 even in concentrations up to 10 mM, while IGF-II dose-dependently facilitated GDP release from Gi-2 with an EC50 of 6 nM. The stimulatory effect of IGF-II was not observed in vesicles reconstituted with Gi-2 alone. In addition, also in a native environment of cell membranes, man6P did not affect an endogenous 40-kDa protein or exogenously added purified Gi-2 as assessed with reduction of the pertussis toxin-catalyzed ADP-ribosylation. These results indicate that the IGF-IIR does not activate Gi-like proteins upon man6P binding in phospholipid vesicles and in native cellular membranes, whereas the receptor activates Gi-like proteins upon IGF-II binding in both environments. Thus, we postulate that the IGF-IIR dissimilarly responds to the two structurally unrelated ligands, IGF-II and man6P, in the linkage function with G proteins.  相似文献   

20.
The mannose 6-phosphate (Man-6-P) receptor is an integral membrane glycoprotein which mediates intracellular transport and receptor-mediated endocytosis of lysosomal proteins. Clathrin-coated vesicles, which have been shown to be significantly involved in these processes, have also been shown to be a major subcellular site of the receptor. In order to define the orientation of the Man-6-P receptor within the coated vesicle membrane, highly purified preparations of coated vesicles were prepared from bovine brain employing D2O/sucrose gradient centrifugation and Sephacryl S-1000 column chromatography. Using [35S]methionine-labeled lysosomal enzymes secreted by Chinese hamster ovary cells as receptor ligand, significant binding activity was detected only upon permeabilization of the coated vesicle membranes with detergent. Prior treatment of intact vesicles with proteinase K resulted in similar binding activity upon permeabilization. However, examination of the receptor by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with rabbit anti-receptor serum revealed that proteinase K treatment of intact vesicles reduced the size of the receptor by 12,000 daltons. A similar decrease in size was obtained when the vesicles were treated with carboxypeptidase Y. These results suggest that the Man-6-P receptor is a transmembrane protein with its lysosomal enzyme binding site oriented toward the lumen of the coated vesicle and its C-terminal end exposed to the exterior or cytoplasmic portion of the vesicle membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号