首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mannose 6-phosphate receptor proteins mediate transport of lysosomal enzymes to lysosomes in eukaryotes. Two receptors designated as MPR 300 and MPR 46 based on their apparent molecular mass have been well studied from human and bovine liver. In humans, it has been shown that the receptors are present in different concentrations in different tissues. In the present study, MPR 300 and MPR 46 were purified from goat liver by phosphomannan affinity chromatography, and polyclonal antibodies were raised in rabbits. MPR 300 receptor specific antibodies have been purified from the antiserum using a goat-MPR 300-receptor gel. Using this affinity-purified antibody and the antiserum to goat MPR 46, as well as an affinity-purified MSC1 antibody that is specific for MPR 46, we developed an ELISA method to quantify both the receptors. The receptors could be measured in the concentration range of 1-10 ng using ELISA. The receptors could be quantified from membrane extracts of different tissues of goat and chicken using this method.  相似文献   

4.
The Mannose 6-phosphate receptor (MPR’s) proteins are important for transporting lysosomal enzymes from trans-golgi to the pre-lysosomal compartment. These are conserved in the vertebrates from fish to mammals. We have cloned the full length cDNA for the goat MPR 46 protein and compared its sequences to the other known vertebrate MPR 46 proteins. In the present study the full-length cDNA for the goat MPR 46 protein was expressed in MPR deficient cells. The expressed protein was purified on the multivalent phosphomannan gel in the presence of divalent metal ions. The apparent molecular mass of the expressed protein was found to be ∼46 kDa and also exhibits oligomeric nature as observed in the other species, by using an MSC1 antibody (that recognizes the MPR 46 from molluscs to mammals) as well as with a peptide specific antibody corresponding to amino acid residues (218–237) of the cytoplasmic tail of human MPR 46 protein. Furthermore the distribution of the expressed protein was visualized by immunofluorescence using MSC1 and LAMP1 antibody. Additionally in the goat MPR 46 expressing cells, the sorting function of the expressed protein to sort cathepsin D to lysosomes was studied by confocal microscopy using cathepsin D antiserum and LAMP1 antibody. The binding of goat MPR 46 to cathepsin D was shown in far Western blotting and the mannose 6-phosphate dependent binding was shown by co-immunoprecipitation.  相似文献   

5.
Mannose 6-phosphate receptor proteins (MPR 300 and 46) in mammals have been shown to mediate transport of lysosomal enzymes to lysosomes intracellularly. Both receptors are also expressed on the plasma membrane. Only MPR 300 protein on the plasma membrane has been shown to be a multifunctional protein which in addition to binding mannose 6-phosphate containing proteins also binds human insulin-like growth factor-II (IGF-II) causing its internalization [Hille-Rehfeld, A. (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta. 1241: 177–194]. This property has been shown to be exhibited by other mammalian receptors but not by the chicken and frog receptors. In a recent study however it was shown that the fish embryo MPR 300 binds human IGF-II. [Mendez, E., Planas, J.V., Castillo, J., Navarro, I. and Gutierrez, J. (2001) Identification of a type II insulin-like growth factor receptor in fish embryos. Endocrinology, 142: 1090–1097]. In the present study, we demonstrate that the purified goat and chicken liver receptors bind human IGF-II by employing cross-linking experiments (purified receptors and radiolabeled IGF-II) and by ligand blotting (using purified receptors and biotinylated IGF-II). Further CEF cells (chicken embryonic fibroblasts) that are known to contain the putative MPR 300 protein were employed to demonstrate that the CEF cell receptor binds human IGF-II.  相似文献   

6.
An affinity matrix (Sepharose 6B-divinyl sulfone-pentaphosphomannan) has been developed which can be efficiently used for the purification of the MPR 215 from different tissues of rat as well as from goat liver. The matrix developed is relatively easy to prepare compared with the available procedures, and can be used for the purification of similar receptor proteins from other sources.  相似文献   

7.
Two mannose 6-phosphate receptors (MPR 300 and MPR 46) are involved in transport of lysosomal enzymes. Both receptors are expressed in all mammalian species studied so far and in chicken. Here we present the first report on affinity purification of both MPRs from the liver tissues of reptiles and amphibians using Sepharose divinyl sulfone phosphomannan at pH 7.0. MPR 300 from both species show similar electrophoretic mobility as mammalian MPR 300 and cross-react with an antibody directed against MPR 300 from goat liver. Furthermore, MPR 46 from reptilian liver and amphibian oocytes cross-react with peptide-specific antibodies against the cytoplasmic domain of human MPR 46 (anti-MSC1).  相似文献   

8.
The lysosomal matrix is estimated to contain about 50 different proteins. Most of the matrix proteins are acid hydrolases that depend on mannose 6-phosphate receptors (MPR) for targeting to lysosomes. Here, we describe a comprehensive proteome analysis of MPR-binding proteins from mouse. Mouse embryonic fibroblasts defective in both MPR (MPR 46-/- and MPR 300-/-) are known to secrete the lysosomal matrix proteins. Secretions of these cells were affinity purified using an affinity matrix derivatized with MPR46 and MPR300. In the protein fraction bound to the affinity matrix and eluted with mannose 6-phosphate, 34 known lysosomal matrix proteins, 4 candidate proteins of the lysosomal matrix and 4 non-lysosomal contaminants were identified by mass spectrometry after separation by two-dimensional gel electrophoresis or by multidimensional protein identification technology. For 3 of the candidate proteins, mammalian ependymin-related protein-2 (MERP-2), retinoid-inducible serine carboxypeptidase (RISC) and the hypothetical 66.3-kDa protein we could verify that C-terminally tagged forms bound in an M6P-dependent manner to an MPR-affinity matrix and were internalized via MPR-mediated endocytosis. Hence these 3 proteins are likely to represent hitherto unrecognized lysosomal matrix proteins.  相似文献   

9.
Most mammalian cells contain two types of mannose 6-phosphate (Man-6-P) receptors (MPRs): the 300 kDa cation-independent (CI) MPR and 46 kDa cation-dependent (CD) MPR. The two MPRs have overlapping function in intracellular targeting of newly synthesized lysosomal proteins, but both are required for efficient targeting. Despite extensive investigation, the relative roles and specialized functions of each MPR in targeting of specific proteins remain questions of fundamental interest. One possibility is that most Man-6-P glycoproteins are transported by both MPRs, but there may be subsets that are preferentially transported by each. To investigate this, we have conducted a proteomics analysis of serum from mice lacking either MPR with the reasoning that lysosomal proteins that are selectively transported by a given MPR should be preferentially secreted into the bloodstream in its absence. We purified and identified Man-6-P glycoproteins and glycopeptides from wild-type, CDMPR-deficient, and CIMPR-deficient mouse serum and found both lysosomal proteins and proteins not currently thought to have lysosomal function. Different mass spectrometric approaches (spectral count analysis of nanospray LC-MS/MS experiments on unlabeled samples and LC-MALDI/TOF/TOF experiments on iTRAQ-labeled samples) revealed a number of proteins that appear specifically elevated in serum from each MPR-deficient mouse. Man-6-P glycoforms of cellular repressor of E1A-stimulated genes 1, tripeptidyl peptidase I, and heparanase were elevated in absence of the CDMPR and Man-6-P glycoforms of alpha-mannosidase B1, cathepsin D, and prosaposin were elevated in the absence of the CIMPR. Results were confirmed by Western blot analyses for select proteins. This study provides a comparison of different quantitative mass spectrometric approaches and provides the first report of proteins whose cellular targeting appears to be MPR-selective under physiological conditions.  相似文献   

10.
Nowadays, the quality of any food used for human consumption is, to a considerable extent, considered by its possible contribution to the maintenance or improvement of the consumer's health. In developed countries there is increasing interest in goat milk and its derivates, the quality of which is considered of special importance in the light of current tendencies favouring healthy eating. In particular, goat's milk is a hypoallergenic alternative to cow's milk in the human diet. In the present work, we studied the casein alpha S1 and S2 proteins of cow, goat and sheep for comparative analysis. We found that the amino acid sequence of these proteins is almost same in goat and sheep but there are several changes at different base pairs when these two sequences are compared with cow. Prediction of secondary structures (GOR) was performed for alpha s1 and s2 proteins to gain functional insights. Our in silico study revealed considerable identity in chemical properties between goat and sheep but a considerable dissimilarity in cow with goat and sheep casein proteins. Moreover, the effect amino acid change on secondary structures in the three species is discussed. There was no significant difference found between goat and sheep alpha S1 and S2 proteins, so naturally both will be having same properties. The study concludes that sheep milk is another convenient alternative for the cow milk allergic children.  相似文献   

11.
Mannose-6-phosphate receptors (MPRs) have been identified in a wide range of species from humans to invertebrates such as molluscs. A characteristic of all MPRs is their common property to recognize mannose-6-phosphate residues that are labelling lysosomal enzymes and to mediate their targeting to lysosomes in mammalian cells by the corresponding receptor proteins. We present here the analysis of full-length sequences for MPR 46 from zebrafish (Danio rerio) and its functional analysis. This is the first non-mammalian MPR 46 to be characterised. The amino acid sequences of the zebrafish MPR 46 displays 70% similarity to the human MPR 46 protein. In particular, all essential cysteine residues, the transmembrane domain as well as the cytoplasmic tail residues harbouring the signals for endocytosis and Golgi-localizing, γ-ear-containing, ARF-binding protein (GGA)-mediated sorting at the trans-Golgi network, are highly conserved. The zebrafish MPR 46 has the arginine residue known to be essential for mannose-6-phosphate binding and other additional characteristic residues of the mannose-6-phosphate ligand-binding pocket. Like the mammalian MPR 46, zebrafish MPR 46 binds to the multimeric mannose-6-phosphate ligand phosphomannan and can rescue the missorting of lysosomal enzymes in mammalian MPR-deficient cells. The conserved C-terminal acidic dileucine motif (DxxLL) in the cytoplasmic domain of zebrafish MPR 46 essential for the interaction of the GGAs with the receptor domains interacts with the human GGA1-VHS domain. Interestingly, the serine residue suggested to regulate the interaction between the tail and the GGAs in a phosphorylation-dependent manner is substituted by a proline residue in fish. Electronic Supplementary Material Supplementary material is available for this article at . The zebrafish MPR 46 sequence data have been submitted to the GenBank database under accession no. DQ089037.  相似文献   

12.
Lysosomal enzymes containing mannose 6-phosphate recognition markers are sorted to lysosomes by mannose 6-phosphate receptors (MPRs). The physiological importance of this targeting mechanism is illustrated by I-cell disease, a fatal lysosomal storage disorder caused by the absence of mannose 6-phosphate residues in lysosomal enzymes. Most mammalian cells express two MPRs. Although the binding specificities, subcellular distribution and expression pattern of the two receptors can be differentiated, their coexpression is not understood. The larger of the two receptors with an M(r) of approximately 300,000 (MPR300), which also binds IGFII, appears to have a dominant role in lysosomal enzyme targeting, while the function of the smaller receptor with an M(r) of 46,000 (MPR46) is less clear. To investigate the in vivo function of the MPR46, we generated MPR46-deficient mice using gene targeting in embryonic stem cells. Reduced intracellular retention of newly synthesized lysosomal proteins in cells from MPR46 -/- mice demonstrated an essential sorting function of MPR46. The phenotype of MPR46 -/- mice was normal, indicating mechanisms that compensate the MPR46 deficiency in vivo.  相似文献   

13.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr(−/−) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.  相似文献   

14.
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer’s incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15–20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss.  相似文献   

15.
A monoclonal antibody has been developed against the putative junctional protein or spanning protein (SP) from skeletal muscle triads. By immuno-affinity chromatography, we have purified this protein. The native protein has a molecular mass of 630-800 kD, as determined by gel filtration and rate zonal centrifugation. Within the limits of the methods used, the basic unit of the SP appears to be a dimer. In electron micrographs, it is shown to exhibit a circular profile with a diameter of approximately 100 A. In thin section analysis, the protein is frequently observed as parallel tracks of electron-dense particles bordering a translucent core. We suggest that the basic unit of the junctional structure is a dimer of 300-kD subunits and that four such entities constitute the intact SP. The purified protein has been used to develop polyclonal antibodies. By immunoelectron microscopy using immunogold probes, the SP has been localized to the junctional gap of the triad. By attaching the SP to an affinity resin, three proteins have been identified as forming associations with the SP. The Mrs of the proteins are 150, 62, and 38 kD; the 62-kD protein is calsequestrin.  相似文献   

16.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) are involved in the targeting of newly synthesized lysosomal enzymes and only MPR 300 also participates in the endocytosis of various exogenous ligands. The present study describes for the first time the MPR 300 dependent pathway of lysosomal enzyme sorting in the Biomphalaria glabrata embryonic (Bge) cells. Lysosomal enzymes (arylsulfatase A, β-hexosaminidase and α-fucosidase) were identified by their enzymatic activities and by immunoprecipitation with specific antisera. Exposure of Bge cells to unio MPR 300 antiserum resulted in a dramatic loss of MPR 300 protein with a shortened half life of ∼20 min as compared to control cells exposed to preimmune serum in which the half life of MPR 300 was of ∼13 h. Loss of receptor proteins resulted in a significant misrouting of newly synthesized lysosomal enzymes and their secretion in cell culture medium as demonstrated by immunoprecipitation. The ability of Bge cells to uptake and internalize labeled arylsulfatase A, β-hexosaminidase and α-fucosidase enzymes contained in cell secretion products also indicated the role of B. glabrata MPR 300 (CIMPR) protein in internalization and targeting of lysosomal enzymes. M6P dependent binding of lysosomal enzymes to MPR 300 was shown by confocal microscopy and coimmunoprecipitation experiments.  相似文献   

17.
The 280-kD cation-independent mannose-6-phosphate receptor (MPR) has been shown to play a role in endocytic uptake of granzyme B, since target cells overexpressing MPR have an increased sensitivity to granzyme B-mediated apoptosis. On this basis, it has been proposed that cells lacking MPR are poor targets for cytotoxic lymphocytes that mediate allograft rejection or tumor immune surveillance. In the present study, we report that the uptake of granzyme B into target cells is independent of MPR. We used HeLa cells overexpressing a dominant-negative mutated (K44A) form of dynamin and mouse fibroblasts overexpressing or lacking MPR to show that the MPR/clathrin/dynamin pathway is not required for granzyme B uptake. Consistent with this observation, cells lacking the MPR/clathrin pathway remained sensitive to granzyme B. Exposure of K44A-dynamin-overexpressing and wild-type HeLa cells to granzyme B with sublytic perforin resulted in similar apoptosis in the two cell populations, both in short and long term assays. Granzyme B uptake into MPR-overexpressing L cells was more rapid than into MPR-null L cells, but the receptor-deficient cells took up granzyme B through fluid phase micropinocytosis and remained sensitive to it. Contrary to previous findings, we also demonstrated that mouse tumor allografts that lack MPR expression were rejected as rapidly as tumors that overexpress MPR. Entry of granzyme B into target cells and its intracellular trafficking to induce target cell death in the presence of perforin are therefore not critically dependent on MPR or clathrin/dynamin-dependent endocytosis.  相似文献   

18.
In mammals, Mannose 6-phosphate receptor proteins (MPR 300 and MPR 46) mediate transport of lysosomal enzymes to lysosomes. Both receptors have been found in non-mammalian vertebrates including fish. To investigate the presence of MPRs in invertebrates, MPR 300 protein was isolated from the mollusc unio by affinity chromatography. It was shown to exhibit biochemical and immunological properties similar to mammalian MPR 300.  相似文献   

19.
The adaptor complexes AP-1 and AP-3 are localized to endosomes and/or the trans Golgi network (TGN). Because of limitations in analysing intracellular adaptor function directly, their site of function is a matter of ongoing uncertainty. To overcome this problem and to analyse adaptor sorting at the TGN, we reconstituted vesicle formation from Golgi/TGN-enriched membranes in a novel in vitro budding assay. Melanocytes were metabolically labelled followed by a 19°C temperature block to accumulate newly synthesized proteins in Golgi membranes, which were then enriched by subcellular fractionation and used as donor membranes for vesicle formation in vitro . The incorporation of the melanosomal proteins tyrosinase and tyrosinase-related protein 1 (TRP-1) as well as Lamp-1 and 46 kDa mannose-6-phosphate receptor (MPR46) into Golgi/TGN-derived vesicles was temperature, nucleotide, cytosol, ADP ribosylation factor 1 and adaptor dependent. We show that sorting of TRP-1 and MPR46 was AP-1 dependent, while budding of tyrosinase and Lamp-1 required AP-3. Depletion of clathrin inhibited sorting of all four cargo proteins, suggesting that AP-1 and AP-3 are involved in the formation of distinct types of clathrin-coated vesicles, each of which is characterized by the incorporation of specific cargo membrane proteins.  相似文献   

20.
The interaction of adaptor protein (AP) complexes with signal structures in the cytoplasmic domains of membrane proteins is required for intracellular sorting. Tyrosine- or dileucine-based motifs have been reported to bind to medium chain subunits (mu) of AP-1, AP-2, or AP-3. In the present study, we have examined the interaction of the entire 67-amino acid cytoplasmic domain of the 46-kDa mannose 6-phosphate receptor (MPR46-CT) containing tyrosine- as well as dileucine-based motifs with mu2 and mu3A chains using the yeast two-hybrid system. Both mu2 and mu3A bind specifically to the MPR46-CT. In contrast, mu3A fails to bind to the cytoplasmic domain of the 300-kDa mannose 6-phosphate receptor. Mutational analysis of the MPR46-CT revealed that the tyrosine-based motif and distal sequences rich in acidic amino acid residues are sufficient for effective binding to mu2. However, the dileucine motif was found to be one part of a consecutive complex C-terminal structure comprising tyrosine and dileucine motifs as well as clusters of acidic residues necessary for efficient binding of mu3A. Alanine substitution of 2 or 4 acidic amino acid residues of this cluster reduces the binding to mu3A much more than to mu2. The data suggest that the MPR46 is capable of interacting with different AP complexes using multiple partially overlapping sorting signals, which might depend on posttranslational modifications or subcellular localization of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号