共查询到20条相似文献,搜索用时 15 毫秒
1.
In a database search for homologs of acyl-coenzyme A oxidases (ACX) in Arabidopsis, we identified a partial genomic sequence encoding an apparently novel member of this gene family. Using this sequence information we then isolated the corresponding full-length cDNA from etiolated Arabidopsis cotyledons and have characterized the encoded recombinant protein. The polypeptide contains 675 amino acids. The 34 residues at the amino terminus have sequence similarity to the peroxisomal targeting signal 2 of glyoxysomal proteins, including the R-[I/Q/L]-X5-HL-XL-X15-22-C consensus sequence, suggesting a possible microsomal localization. Affinity purification of the encoded recombinant protein expressed in Escherichia coli followed by enzymatic assay, showed that this enzyme is active on C8:0- to C14:0-coenzyme A with maximal activity on C12:0-coenzyme A, indicating that it has medium-chain-specific activity. These data indicate that the protein reported here is different from previously characterized classes of ACX1, ACX2, and short-chain ACX (SACX), both in sequence and substrate chain-length specificity profile. We therefore, designate this new gene AtACX3. The temporal and spatial expression patterns of AtACX3 during development and in various tissues were similar to those of the AtSACX and other genes expressed in glyoxysomes. Currently available database information indicates that AtACX3 is present as a single copy gene. 相似文献
2.
Rylott EL Rogers CA Gilday AD Edgell T Larson TR Graham IA 《The Journal of biological chemistry》2003,278(24):21370-21377
The short-chain acyl-CoA oxidase (ACX4) is one of a family of ACX genes that together catalyze the first step of peroxisomal fatty acid beta-oxidation during early, postgerminative growth in oilseed species. Here we have isolated and characterized an Arabidopsis thaliana mutant containing a T-DNA insert in ACX4. In acx4 seedlings, short-chain acyl-CoA oxidase activity was reduced by greater than 98%, whereas medium-chain activity was unchanged from wild type levels. Despite the almost complete loss of short-chain activity, lipid catabolism and seedling growth and establishment were unaltered in the acx4 mutant. However, the acx4 seedlings accumulated high levels (31 mol %) of short-chain acyl-CoAs and showed resistance to 2,4-dichlorophenoxybutyric acid, which is converted to the herbicide and auxin analogue 2,4-dichlorophenoxyacetic acid by beta-oxidation. A mutant in medium-chain length acyl-CoA activity (acx3) (1) shows a similar phenotype to acx4, and we show here that acx3 seedlings accumulate medium-chain length acyl-CoAs (16.4 mol %). The acx3 and acx4 mutants were crossed together, and remarkably, the acx3acx4 double mutants aborted during the first phase of embryo development. We propose that acx3acx4 double mutants are nonviable because they have a complete block in short-chain acyl-CoA oxidase activity. This is the first demonstration of the effects of eliminating (short-chain) beta-oxidation capacity in plants and shows that a functional beta-oxidation cycle is essential in the early stages of embryo development. 相似文献
3.
Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction 总被引:1,自引:0,他引:1
AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport. 相似文献
4.
5.
The 4SN-Tudor domain protein is an almost ubiquitous eukaryotic protein with four Staphylococcal nuclease domains at the N terminus and a Tudor domain towards the C terminus. It has been found that Tudor-SN protein has multiple roles in governing gene expression during cell growth and development in animals. In plant, although Tudor-SN orthologs have been found in rice, pea and Arabidopsis, and are associated with cytoskeleton, their roles in growth and development are poorly understood. In this study, we investigated the function of Arabidopsis Tudor-SN protein, AtTudor. Our results indicated that the expression of AtTudor2 in seeds was evidently higher than in other tissues. Furthermore, we found that the expression of a key enzyme for GA biosynthesis, AtGA20ox3, was downregulated obviously in AtTudor2 T-DNA insertion mutant and AtTudor1/AtTudor2 RNAi transgenic lines. Together, our results suggest that AtTudor2 is involved in GA biosynthesis and seed germination of Arabidopsis. 相似文献
6.
7.
8.
L Schepers P P Van Veldhoven M Casteels H J Eyssen G P Mannaerts 《The Journal of biological chemistry》1990,265(9):5242-5246
Mammalian liver peroxisomes are capable of beta-oxidizing a variety of substrates including very long chain fatty acids and the side chains of the bile acid intermediates di- and trihydroxycoprostanic acid. The first enzyme of peroxisomal beta-oxidation is acyl-CoA oxidase. It remains unknown whether peroxisomes possess one or several acyl-CoA oxidases. Peroxisomal oxidases from rat liver were partially purified by (NH4)2SO4 precipitation and heat treatment, and the preparation was subjected to chromatofocusing, chromatography on hydroxylapatite and dye affinity matrices, and gel filtration. The column eluates were assayed for palmitoyl-CoA and trihydroxycoprostanoyl-CoA oxidase activities and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results revealed the presence of three acyl-CoA oxidases: 1) a fatty acyl-CoA oxidase with a pI of 8.3 and an apparent molecular mass of 145 kDa. The enzyme consisted mainly of 52- and 22.5-kDa subunits and could be induced by clofibrate treatment; 2) a noninducible fatty acyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 427 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 71 kDa; and 3) a noninducile trihydroxycoprostanoyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 139 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 69 kDa. Our findings are probably related to the recent discovery of two species of acyl-CoA oxidase mRNA in rat liver (Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furata, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8131-8137) and they probably also explain why in human peroxisomal beta-oxidation defects an accumulation of very long chain fatty acids is not always accompanied by an excretion of bile acid intermediates and vice versa. 相似文献
9.
Linda O'Reilly Peter Bross Thomas J Corydon Simon E Olpin Jakob Hansen John M Kenney Shawn E McCandless Dianne M Frazier Vibeke Winter Niels Gregersen Paul C Engel Brage Storstein Andresen 《European journal of biochemistry》2004,271(20):4053-4063
Medium-chain acyl-CoA dehydrogenase (MCAD) is a homotetrameric flavoprotein which catalyses the initial step of the beta-oxidation of medium-chain fatty acids. Mutations in MCAD may cause disease in humans. A Y42H mutation is frequently found in babies identified by newborn screening with MS/MS, yet there are no reports of patients presenting clinically with this mutation. As a basis for judging its potential consequences we have examined the protein phenotype of the Y42H mutation and the common disease-associated K304E mutation. Our studies of the intracellular biogenesis of the variant proteins at different temperatures in isolated mitochondria after in vitro translation, together with studies of cultured patient cells, indicated that steady-state levels of the Y42H variant in comparison to wild-type were decreased at higher temperature though to a lesser extent than for the K304E variant. To distinguish between effects of temperature on folding/assembly and the stability of the native enzyme, the thermal stability of the variant proteins was studied after expression and purification by dye affinity chromatography. This showed that, compared with the wild-type enzyme, the thermostability of the Y42H variant was decreased, but not to the same degree as that of the K304E variant. Substrate binding, interaction with the natural electron acceptor, and the binding of the prosthetic group, FAD, were only slightly affected by the Y42H mutation. Our study suggests that Y42H is a temperature sensitive mutation, which is mild at low temperatures, but may have deleterious effects at increased temperatures. 相似文献
10.
Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination 总被引:22,自引:0,他引:22
下载免费PDF全文

Seed germination is regulated by many signals. We investigated the possible involvement of a heterotrimeric G protein complex in this signal regulation. Seeds that carry a protein null mutation in the gene encoding the alpha subunit of the G protein in Arabidopsis (GPA1) are 100-fold less responsive to gibberellic acid (GA), have increased sensitivity to high levels of Glc, and have a near-wild-type germination response to abscisic acid and ethylene, indicating that GPA1 does not directly couple these signals in germination control. Seeds ectopically expressing GPA1 are at least a million-fold more responsive to GA, yet still require GA for germination. We conclude that the GPA1 indirectly operates on the GA pathway to control germination by potentiation. We propose that this potentiation is directly mediated by brassinosteroids (BR) because the BR response and synthesis mutants, bri1-5 and det2-1, respectively, share the same GA sensitivity as gpa1 seeds. Furthermore, gpa1 seeds are completely insensitive to brassinolide rescue of germination when the level of GA in seeds is reduced. A lack of BR responsiveness is also apparent in gpa1 roots and hypocotyls suggesting that BR signal transduction is likely coupled by a heterotrimeric G protein at various points in plant development. 相似文献
11.
12.
13.
Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p 总被引:4,自引:0,他引:4
Klein AT van den Berg M Bottger G Tabak HF Distel B 《The Journal of biological chemistry》2002,277(28):25011-25019
The peroxisomal protein acyl-CoA oxidase (Pox1p) of Saccharomyces cerevisiae lacks either of the two well characterized peroxisomal targeting sequences known as PTS1 and PTS2. Here we demonstrate that peroxisomal import of Pox1p is nevertheless dependent on binding to Pex5p, the PTS1 import receptor. The interaction between Pex5p and Pox1p, however, involves novel contact sites in both proteins. The interaction region in Pex5p is located in a defined area of the amino-terminal part of the protein outside of the tetratricopeptide repeat domain involved in PTS1 recognition; the interaction site in Pox1p is located internally and not at the carboxyl terminus where a PTS1 is normally found. By making use of pex5 mutants that are either specifically disturbed in binding of PTS1 proteins or in binding of Pox1p, we demonstrate the existence of two independent, Pex5p-mediated import pathways into peroxisomes in yeast as follows: a classical PTS1 pathway and a novel, non-PTS1 pathway for Pox1p. 相似文献
14.
Olçer H Kocaçaliskan I 《Zeitschrift für Naturforschung. C, Journal of biosciences》2007,62(1-2):111-115
The effects of increasing concentrations of boron (0, 0.1, 1, 10 and 20 mM) as boric acid on the rate of germination and polyphenol oxidase activities in embryo and endosperm tissues of maize seeds (Zea mays L. cv. Arifiye) were studied. The germination percentage of maize seeds was not affected by boron concentrations up to 10 mM, and decreased by 20 mM. Distilled water and lower boron concentrations (0.1 and 1 mM) increased polyphenol oxidase activities at the beginning of germination up to 12 h whereas its excess levels (10 and 20 mM) decreased polyphenol oxidase activities in embryos and endosperm during germination. Polyphenol oxidase activities with o-diphenolic substrates (caffeic acid, catechol and dopa) were found to be higher than with a monophenolic substrat (tyrosine) in both embryos and endosperms. Further, caffeic acid oxidizing polyphenol oxidase was found to show more activity in embryos of the seeds germinating in distilled water when compared to other substrates. 相似文献
15.
Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis 总被引:30,自引:0,他引:30
下载免费PDF全文

The testa of higher plant seeds protects the embryo against adverse environmental conditions. Its role is assumed mainly by controlling germination through dormancy imposition and by limiting the detrimental activity of physical and biological agents during seed storage. To analyze the function of the testa in the model plant Arabidopsis, we compared mutants affected in testa pigmentation and/or structure for dormancy, germination, and storability. The seeds of most mutants exhibited reduced dormancy. Moreover, unlike wild-type testas, mutant testas were permeable to tetrazolium salts. These altered dormancy and tetrazolium uptake properties were related to defects in the pigmentation of the endothelium and its neighboring crushed parenchymatic layers, as determined by vanillin staining and microscopic observations. Structural aberrations such as missing layers or a modified epidermal layer in specific mutants also affected dormancy levels and permeability to tetrazolium. Both structural and pigmentation mutants deteriorated faster than the wild types during natural aging at room temperature, with structural mutants being the most strongly affected. 相似文献
16.
17.
18.
A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele 总被引:4,自引:1,他引:4
Eiji Nambara Satoshi Naito Peter McCourt 《The Plant journal : for cell and molecular biology》1992,2(4):435-441
In order to investigate the role of the plant hormones gibberellin (GA) and abscisic acid (ABA) in seed development and germination the GA biosynthetic inhibitor, Uniconazol, was used to isolate mutants with abnormal germination profiles. In one of these mutants, the ability to germinate on Uniconazol is due to a mutation in the ABI3 gene. However, unlike the previously reported abi3 mutant, this line displays an array of seed-specific developmental defects. The accumulation of seed reserve proteins is dramatically reduced due to reduced levels of the storage protein mRNA. The embryos remain green throughout development and are desiccation intolerant. However, immature seeds are completely non-dormant and grow normally. These results suggest the ABI3 gene is essential for the synthesis of seed storage proteins and for the protection of the embryo during desiccation. 相似文献
19.
Expression of an expansin is associated with endosperm weakening during tomato seed germination 总被引:19,自引:0,他引:19
Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 microM abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening. 相似文献