首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Webs of theridiid spiders: construction, structure and evolution   总被引:4,自引:0,他引:4  
Understanding the web construction behaviour of theridiid (comb-footed) spiders is fundamental to formulating specific evolutionary hypotheses and predictions regarding the reduction of orb-webs. We describe for the first time in detail the web construction behaviour of Achaearanea tepidariorum , Latrodectus geometricus , Theridion sisyphium and T. varians as well as webs of a range of other theridiids. In our survey we distinguish four major web types. Among webs with gumfooted lines, we distinguish between webs with a central retreat ( Achaearanea -type) and those with a peripheral retreat ( Latrodectus -type). Among webs without gumfooted lines, we distinguish between those which contain viscid silk ( Theridion -type) and those with a sheet-like structure, which do not ( Coleosoma -type). Theridiid gumfoot-webs consist of frame lines that anchor them to surroundings and support threads which possess viscid silk. Building of gumfooted lines constitutes a unique stereotyped behaviour and is most probably homologous for Nesticidae and Theridiidae. Webs remained in place for extended periods and were expanded and repaired, but no regular pattern of replacement was observed. We suggest that the cost of producing and maintaining viscid silk might have led to web reduction, at least in theridiids.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 78 , 293−305.  相似文献   

2.
Spider silk is renowned for its high tensile strength, extensibility and toughness. However, the variability of these material properties has largely been ignored, especially at the intra-specific level. Yet, this variation could help us understand the function of spider webs. It may also point to the mechanisms used by spiders to control their silk production, which could be exploited to expand the potential range of applications for silk. In this study, we focus on variation of silk properties within different regions of cobwebs spun by the common house spider, Achaearanea tepidariorum. The cobweb is composed of supporting threads that function to maintain the web shape and hold spiders and prey, and of sticky gumfooted threads that adhere to insects during prey capture. Overall, structural properties, especially thread diameter, are more variable than intrinsic material properties, which may reflect past directional selection on certain silk performance. Supporting threads are thicker and able to bear higher loads, both before deforming permanently and before breaking, compared with sticky gumfooted threads. This may facilitate the function of supporting threads through sustained periods of time. In contrast, sticky gumfooted threads are more elastic, which may reduce the forces that prey apply to webs and allow them to contact multiple sticky capture threads. Therefore, our study suggests that spiders actively modify silk material properties during spinning in ways that enhance web function.  相似文献   

3.
Spinning an elastic ribbon of spider silk   总被引:3,自引:0,他引:3  
The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.  相似文献   

4.
Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.  相似文献   

5.
Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy crickets or small, low kinetic energy pillbugs for 1 week and then examined their freshly spun silk. We separated mechanical performance into structural and material effects. We measured both types of properties for silk threads collected directly from cobwebs to test for "tuning" of silk performance to different aspects of prey capture. We compared silk from two different functional regions of the cobweb-sticky gumfooted threads that adhere directly to prey and supporting threads that maintain web integrity. Supporting threads from cricket-fed spiders were stiffer and tougher than supporting threads from pillbug-fed spiders. Both types of silk from cricket-fed spiders broke at higher loads than silk from pillbug-fed spiders. We explain this variation using a simple model of forces exerted by prey and spiders on single threads and propose potential mechanisms for this change in material properties. Two alternative, nonexclusive, hypotheses are suggested by our data. Spiders may tune silk to different types of prey by spinning threads that are able to hold prey without deforming permanently. Alternatively, as spider's body mass differed dramatically between the two feeding regimes, spiders may tune silk to their own body mass.  相似文献   

6.
Both the uloborid Philoponella vicina and the araneid Gasteracantha cancriformis spiders sometimes placed silk stabilimenta on non-orb "resting webs" that consisted of only one or a few lines. These webs completely lacked sticky silk, so their stabilimenta could not function to attract prey. Some non-orbs were built by spiders when their orb webs are damaged. These observations contradict the prey attraction camouflage hypothesis for stabilimentum function, but are compatible with the spider camouflage and web advertisement to avoid web destruction hypotheses.  相似文献   

7.
The foliage‐dwelling spider fauna was collected in maize fields and on stinging nettles in adjacent margins in Bavaria, South Germany. Two different sampling methods were evaluated: drop cloth sampling and suction sampling. The overall catch was dominated by juvenile spiders, web‐building spiders, and spiders of the families Theridiidae, Linyphiidae, Tetragnathidae and Araneidae (in decreasing order). Field margins harboured more species than maize fields, whereas the total spider abundance was higher in the maize crop. Web‐building spiders such as Theridiidae and Linyphiidae were prominent in maize by individual numbers. Suction sampling with a small suction device proved to be a more efficient and consistent sampling method for foliage‐dwelling spiders than drop cloth sampling. Density and species richness of foliage‐dwelling spiders in maize was shown to be fairly high, implying that spiders of higher strata may play a more important role in biological control than suspected up to now.  相似文献   

8.
The family Theridiidae is one of the most diverse assemblages of spiders, from both a morphological and ecological point of view. The family includes some of the very few cases of sociality reported in spiders, in addition to bizarre foraging behaviors such as kleptoparasitism and araneophagy, and highly diverse web architecture. Theridiids are one of the seven largest families in the Araneae, with about 2200 species described. However, this species diversity is currently grouped in half the number of genera described for other spider families of similar species richness. Recent cladistic analyses of morphological data have provided an undeniable advance in identifying the closest relatives of the theridiids as well as establishing the family's monophyly. Nevertheless, the comb-footed spiders remain an assemblage of poorly defined genera, among which hypothesized relationships have yet to be examined thoroughly. Providing a robust cladistic structure for the Theridiidae is an essential step towards the clarification of the taxonomy of the group and the interpretation of the evolution of the diverse traits found in the family. Here we present results of a molecular phylogenetic analysis of a broad taxonomic sample of the family (40 taxa in 33 of the 79 currently recognized genera) and representatives of nine additional araneoid families, using approximately 2.5kb corresponding to fragments of three nuclear genes (Histone 3, 18SrDNA, and 28SrDNA) and two mitochondrial genes (16SrDNA and CoI). Several methods for incorporating indel information into the phylogenetic analysis are explored, and partition support for the different clades and sensitivity of the results to different assumptions of the analysis are examined as well. Our results marginally support theridiid monophyly, although the phylogenetic structure of the outgroup is unstable and largely contradicts current phylogenetic hypotheses based on morphological data. Several groups of theridiids receive strong support in most of the analyses: latrodectines, argyrodines, hadrotarsines, a revised version of spintharines and two clades including all theridiids without trace of a colulus and those without colular setae. However, the interrelationships of these clades are sensitive to data perturbations and changes in the analysis assumptions.  相似文献   

9.
蜘蛛位置对成功捕获猎物和球型网图案的影响   总被引:3,自引:0,他引:3  
静坐在球型网的中心,蜘蛛可能遭受天敌的攻击并暴露在不利的天气条件下,如风和雨。然而,栖居于网的中心使蜘蛛比隐藏在隐蔽场所中的蜘蛛能更迅速地察觉并捕获猎物,这是因为猎物的位置仅能被位于网中心的蜘蛛所确定。对在隐蔽场所中的蜘蛛而言,提高对猎物捕获率的方式之一是尽量减少隐蔽所与网中心的距离。而且,网中心与隐蔽所之间较短的距离使蜘蛛能更迅速地逃离危险境况。我使用既在网中心、又在隐蔽场所的硬类肥蛛(Larinioides sclopetarius Clerck),来检验这两种行为如何影响对猎物的捕获成功率。隐藏在隐蔽场所中的蜘蛛更经常忽略猎物,使猎物也有比较多的逃离机会,这样,与在网中心的蜘蛛相比,猎物的损失率就更高。另外,研究了隐蔽场所的位置对球型网图案的影响。在大多数球型网中,网中心上方的区域比网下方小,丝也比较少,形成了结构不对称的网;隐蔽场所通常在网的上方。当隐蔽场所的位置在实验中被倒转时,就形成了非典型的球型网。最后,L.sclopetarius建造的网有很突出的边缘非对称性,与隐蔽场所相邻的区域面积较小,而远离隐蔽场所的区域面积较大,这也可解释为减少了隐蔽场所和网中心之间的距离[动物学报50(4):559-565.2004]。  相似文献   

10.
Predation by Achaearanea tepidariorum (Koch 1841) on mealybugs Planococcus citri (Risso 1813) is facilitated by the design of its web, which features a tangle of sticky gumfooted lines, and wrap attacks as well as the ability to handle the prey, whose body is covered with a waxy secretion, via silk. Crawling, i.e., wingless, mealybugs (in particular those in the nymphal stages and adult females and, to a lesser extent, winged males) are caught by means of the gumfooted lines, covered with globules of an adhesive secretion. The process of wrap attack and subsequent handling of the captured prey is a series of the following consecutive events: (1) confining and immobilising the mealybugs with sticky silk; (2) biting with chelicerae and paralyzing the prey with a toxin; (3) detaching the confined prey, attached to the tense threads, from the plant surface and catapulting it toward the central section of the web; (4) wrapping the catapulted prey in viscid silk emitted by the spinning apparatus; (5) transporting the wrapped prey to the central section of the web; (6) wrapping the prey in the central section of the web in nonsticky silk, whose tufts are present in this part of the web even before the attack; (7) filling the prey with digestive fluid; (8) sucking the prey empty; and (9) cleaning the chelicerae and mouth parts. The process of silk tuft wrapping was described for the first time. The described ability to hunt mealybugs implies the possibility of using A. tepidariorum spiders for biological control of these pests.  相似文献   

11.
Individuals of the orb-weaving spider Nephila clavipesbuild complex webs with a region used for prey capture, the orb, and tangle webs opposite either face, the barrier webs. Barrier webs have been hypothesized to serve a variety of functions, including predator defense, and the primary function of the barrier web should be reflected in the relative size of the barrier to the orb under varying conditions of foraging success and predation risk. To investigate the effects of predation pressure and foraging success on barrier web structure, I conducted a comparative study in three disjunct populations that differed in predation risk and foraging success. Although both the orb web and the barrier webs are silk, there was no indication of a foraging-defense trade-off. Barrier web structure did not change during seasonal shifts in orb web size related to changes in preycapture rate, and barrier web silk density and orb radius were positively correlated. The hypothesis that the construction of barrier webs is in part a response to predation pressure was supported. Barrier webs do deflect attacks by some predators, and barrier webs built by small spiders, suffering frequent predation attempts, had a higher silk density than barrier webs built by larger individuals. Additionally, barrier web complexity decreased at a later age in areas with higher predation risk.  相似文献   

12.

Background

Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals'' “extended phenotypes”. In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin''s bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider''s unique web ecology and architecture coevolved with new web building behaviors.

Methodology

We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders.

Conclusions

Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders.  相似文献   

13.
We found that the koinobiont ectoparasitoid wasp Zatypota picticollis is exclusively associated with three orb weaving spiders Cyclosa conica, Mangora acalypha and Zilla diodia from the family Araneidae. Under the influence of the parasitoid's final instar larva the spiders built a specific web architecture, which differed considerably from the capturing orb web. Manipulated webs of C. conica and M. acalypha lacked the spiral, stabilimentum and central hub, and the radials were reduced in number. The manipulated web of Z. diodia consisted of one strong horizontally oriented thread.  相似文献   

14.
A polyclonal antiserum raised against crustacean cardioactive peptide labels 14 clusters of immunoreactive neurons in the protocerebrum of the spiders Tegenaria atrica and Nephila clavipes, and the harvestman (opilionid) Rilaena triangularis. In all species, these clusters possess the same number of neurons, and share similar structural and topological characteristics. Two sets of bilateral symmetrical neurons associated with the optic lobes and the arachnid central body were analysed in detail, comparing the harvestman R. triangularis and the spiders Brachypelma albopilosa (Theraphosidae), Cupiennius salei (Lycosidae), Tegenaria atrica (Agelenidae), Meta segmentata (Metidae) and Nephila clavipes (Araneidae). Sixteen neurons have been identified that display markedly similar axonal pathways and arborization patterns in all species. These neurons are considered homologues in the opilionid and the araneid brains. We presume that these putative phylogenetically persisting neurons represent part of the general morphological pattern of the arachmid brain.  相似文献   

15.
Y. Lubin  J. Henschel 《Oecologia》1996,105(1):64-73
We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the costs of foraging hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.  相似文献   

16.
The brown marmorated stink bug, or Halyomorpha halys, is an invasive pest in North America and Europe that causes severe agricultural damage and nuisance problems for homeowners; and it is originally from China, Taiwan, and the Republic of Korea. While the natural enemy community of H. halys has been evaluated in several agroecosystems, it has not been examined where H. halys overwinters in anthropogenic structures. The aims of the current study were to evaluate 1) whether spider webs commonly found in the home and yard can successfully ensnare H. halys, 2) whether entanglement resulted in consumption by spiders inhabiting the webs, and 3) how frequently H. halys becomes entangled in webs under ambient conditions. To accomplish this, adult H. halys were introduced into webs in and near anthropogenic structures in West Virginia and Maryland, United States, and the behavior of spiders was observed for 5-min intervals at 0, 1, 2, and 24 h after introduction. In addition, a survey of webs was performed to determine the frequency with which spiders naturally capture H. halys inside buildings and in the landscape. Overall, the study found seven spider families in anthropogenic structures. Adult H. halys that were introduced into the webs of Theridiidae, Pholcidae, or Agelenidae had a greater than 50% chance of being ensnared and consumed. Adult H. halys were found naturally most often in webs of Theridiidae. Webs with a funnel or cob web architecture had the greatest probability of ensnaring H. halys, while those with orb structures resulted in the fewest caught. In the wild, 13–20% of spider webs contained dead H. halys. Our results suggest that spiders may be an important contributing factor for mortality of H. halys at overwintering sites, and spiders in or outside homes may help reduce nuisance problems caused by H. halys.  相似文献   

17.
Summary Web-building spiders (Araneae; Theridiidae, Linyphiidae, Araneidae) are catagorized as searchers because they devote a large amount of energy to the construction of the web which constitutes the search phase in the foraging sequence. In this study search energy is equated with the density of threads in a web and the effectiveness of a variety of webs in three broad catagories (tangle webs, sheet webs & orb webs) is tested in the light of current foraging theory. Within each web type there is a distinct thread density at which the number of approaching Drosophila (Diptera; Drosophilidae) that are captured is maximized (Figs. 1, 2, 3). That maximum results from a combination of factors that are a function of the density of threads in the web. The visibility of the web to an approaching Drosophila increases which acts to decrease the number of flies that enter the web (Tables 2, 3, 4). The ability of the web to detain a Drosophila that contacts it (capture efficiency) increases to an asymptote as a function of thread density (Fig. 4). These data support an assumption of many optimal foraging models that with increasing investment in search the predator receives a diminishing return.More Drosophila intercept orb webs than intercept sheet or tangle webs. In addition orb webs detain a greater proportion of the flies that contact them (Fig. 4). Sheet webs are intermediate between orb and tangle webs in their relative abilities to contact and detain Drosophila.  相似文献   

18.
Interspecific predation of three cosmopolitan house spiders, Achearanea tepidariorum (Kock 1841) (Theridiidae), Steotoda triangulosa (Walckenaer 1802) (Theridiidae), and Pholcus phalangioides (Doleschall 1859) (Pholcidae), and the medically significant brown recluse spider, Loxosceles reclusa (Sicariidae) were examined to evaluate transitive predatory relationships and to explore the potential use of cosmopolitan spiders as effective biological control agents on L. reclusa. Fifty houses from northeastern Kansas were visually inspected from May to December 2002 for cosmopolitan spiders and L. reclusa. In 25 houses, insect monitoring traps were used to sample spider diversity and abundance. The remaining 25 houses were monitored to examine intraguild predation and spider behavior. If cosmopolitan spiders have the ability to regulate or decrease L. reclusa populations, houses with large cosmopolitan spider populations are expected to have significantly fewer L. reclusa than houses without cosmopolitan spiders. Predation and/or evidence of predation by all three cosmopolitan spiders on L. reclusa was detected in 68% of houses. Spearman's rank correlation analysis showed overall positive relationships between population densities of cosmopolitan spiders and L. reclusa. When evaluated independently, the presence of both A. tepidariorum and S. triangulosa showed negative, yet nonsignificant, relationships with L. reclusa densities, whereas P. phalangioides showed a positive nonsignificant relationship. Although statistical tests showed a decrease in L. reclusa population densities with increased population densities of two cosmopolitan species, alluding to a potential beneficial interaction for biological control, observations of spider behavior, web positioning (niche partitioning), and predation showed little possibility of biological control capabilities.  相似文献   

19.
Summary The winter wheat varieties Starke and Cappelle Desprez and the spring wheat Chinese Spring were analysed for structural chromosome rearrangements that resulted in the formation of multivalents in F1 hybrids. The analyses were carried out using hybrids involving euploids, monosomic and ditelosomic stocks, and double-monotelodisomic constructs. The study confirmed that Cappelle Desprez differs from Chinese Spring in a reciprocal translocation between chromosomes 5B and 7B (Riley et al. 1967); a translocation involving chromosomes 3B and 3D could not be verified. Furthermore, the analysis showed that Starke differs from Chinese Spring in a reciprocal translocation between chromosomes 7A and 7D. Both translocations have a coefficient of multivalent realisation of about 0.84. Further multivalents in euploid Starke, in euploid and some aneuploid stocks of Cappelle Desprez, and in euploid as well as various types of aneuploid hybrids between all three varieties could nearly all be explained hypothesizing that chromosome 2B of both Starke and Cappelle Desprez is a duplication-deficiency chromosome. In the hypothesis a part of the long arm of 2B is missing and replaced by a duplicated part of the long arm of chromosome 2D. The multivalents of this rearrangement showed an average coefficient of realisation of about 0.09.Sven Ellerström died in December 1985  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号