首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenylalamine synthesis by cytoplasmic ribosomes of Gateway barley (Hordeum vulgare) and its virescens single gene nuclear mutant was compared. The cytoplasmic 80S ribosomes were isolated from unimbibed embryo material and the ribosomes were dissociated into their component 60S and 40S subunits by centrifugation through sucrose gradients containing high KCl-to-MgCl2 buffer. These separated subunits could be reassociated by resuspension in buffer having about equimolar concentrations of MgCl2 and KCl. Both homologous and heterologous combinations of the subunits reassociated to give monomeric 80S ribosomes, and the derived monomers as well as various combinations of the individual subunits showed equivalent activity in an in vitro system for poly (U)-directed polyphenylalanine synthesis.  相似文献   

2.
The eukaryotic supernatant initiation factor, described in earlier publications from this laboratory, has been isolated and purified over 3000-fold, to about 70 to 80% purity, from extracts of embryos of the brine shrimp Artemia salina. The native protein appears to consist of two equal subunits, each weighing approximately 74,000 daltons. Like the bacterial initiation factor IF2, its prokaryotic counterpart, the Artemia factor promotes the AUG-dependent binding of fMet-tRNA, or the poly (U)-dependent binding of N-acetyl-Phe-tRNA, to the small ribosomal subunit. However, unlike IF2, the reaction is GTP-independent and the factor functions catalytically for one molecule may promote the binding of up to 12 molecules of fMet-tRNA to 40 s subunits at 0 °C.  相似文献   

3.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   

4.
The numbers of sulphydryl groups on NH4Cl-washed rat liver polyribosomes in different functional states were measured under carefully standardized conditions with 14C-labelled N-ethylmaleimide and 35S-labelled 5,5-dithio-bis(2-nitrobenzoic acid). Ribosomes denatured with urea had 120 titratable sulphydryl groups, 60 on each subunit, whereas native ribosomes invariably showed fewer available sulphydryl groups. Ribosomes stripped of transfer RNA (S-type ribosomes) had 55 available sulphydryl groups. Ribosomes bearing the growing peptidyl-tRNA at the acceptor site had 41 sulphydryl groups available. If these A-type ribosomes were labelled with 14C-labelled N-ethylmaleimide and dissociated into subunits, 23 of the labelled sulphydryl groups were found on the 60 S subunit and 19 on the 40 S subunit. After translocation of the peptidyl-tRNA to the donor position on ribosomes (D ribosomes), the number of available sulphydryl groups increased to 72, of which 43 were on the 60 S subunit and 29 on the 40 S subunit. This demonstrates that both subunits participate in the change of peptidyl-tRNA from the A to D positions. When the D ribosomes were reacted with EF2 (elongation factor) and GTP, the available sulphydryl groups increased to 82; addition of EF2 alone or with GDP, GDPCP or ATP failed to cause this increase, which has accordingly been attributed to an energy-dependent conformational change in the ribosome.Ribosomes were reconstructed from subunits with poly(U) and Phe-tRNA. In the presence of poly(U) only, a ribosome with 55 available SH groups was formed, thus corresponding to the stripped ribosomes. When both poly(U) and Phe-tRNA were present, a ribosome was formed with 44 available sulphydryl groups, corresponding approximately to an A-type ribosome. Since no EF1 or GTP was used in reconstructing this ribosome, these data indicate that the conformation of A-type ribosomes is not dependent on EF1 or GTP, but is due to the presence of tRNA at the acceptor site.We therefore incline to the view that the observed changes in available SH groups reflect conformational changes, with an opening up of ribosome structure as it progresses from having the peptidyl-tRNA at the A position to the D position and then binds EF2 and GTP, followed by a restoration of the more compact from when the incoming aminoacyl-tRNA is then bound.  相似文献   

5.
The method for isolation of human placenta ribosomal subunits containing intact rRNA has been determined. The method uses fresh unfrozen placenta. Activity of 80S ribosomes obtained via reassociation of 40S and 60S subunits in non-enzymatic poly(U)-mediated Phe-tRNAPhe binding, was near 75% (maximal [14C]Phe-tRNA(Phe) binding was 1.5 mol Phe-tRNA(Phe) per mol of 80S ribosomes). Activity of 80S ribosomes with damaged rRNA isolated from frozen placenta was 2 times lower (the maximum level of poly(U)-dependent Phe-tRNA(Phe) binding was 0.7 mol per mol of ribosomes). The activity 80S ribosomes in poly(U)-mediated synthesis of polyphenylalanine was determined by using fractionated ("ribosomeless") protein synthesising system from rabbit reticulocytes. In this system up to the 50 mol of Phe residues per mol of 80S ribosomes are incorporated in acid insoluble fraction in 1 hour, at 37 degrees C. The obtained level of [14C]phenylalanine incorporation is three times as much as the amount of Phe residues observed for the ribosomal subunits, isolated from frozen placenta.  相似文献   

6.
Ribosomes and polyribosomes from Clostridium pasteurianum were isolated and their activities were compared with those of ribosomes from Escherichia coli in protein synthesis in vitro. C. pasteurianum ribosomes exhibited a high level of activity due to endogenous messenger ribonucleic acid (RNA). For translation of polyuridylic acid [poly(U)], C. pasteurianum ribosomes required a higher concentration of Mg(2+) and a much higher level of poly(U) than did E. coli ribosomes. Phage f2 RNA added to the system with C. pasteurianum ribosomes gave no significant stimulation of protein synthesis in a homologous system or with E. coli initiation factors. The 30S and 50S subunits prepared from C. pasteurianum ribosomes reassociated less readily than subunits from E. coli. The ability of the C. pasteurianum subunits to reassociated was found to be dependent upon the presence of a reducing agent during preparation and during analysis of the reassociation products. In heterologous combinations, E. coli 30S subunits associated readily with C. pasteurianum 50S subunits to form 70S particles, but C. pasteurianum 30S subunits and E. coli 50S subunits did not associate. In poly(U) translation, E. coli 30S subunits were active in combination with 50S subunits from either E. coli or C. pasteurianum, but C. pasteurianum 30S subunits were not active in combination with either type of 50S subunits. Polyribosomes prepared from C. pasteurianum were very active in protein synthesis, and well-defined ribosomal aggregates as large as heptamers could be seen on sucrose gradients. An attempt was made to demonstrate synthesis in vitro of ferredoxin.  相似文献   

7.
Dissociation of ribosomes and seed germination   总被引:1,自引:1,他引:0       下载免费PDF全文
Ribosomes from rice embryos (Oryza sativa) were dissociated into ribosomal subunits in vitro by systematic reduction of the Mg2+ concentration. Ribosomes from imbibed (28 C) embryos were more easily dissociated than those from nonimbibed embryos. This was not observed with ribosomes from either imbibed, nonviable embryos, or from embryos imbibed at 0 C. Ribosomes from embryos which had been imbided and subsequently dehydrated resembled ribosomes from nonimbibed embryos in their resistance to dissociation. The change in the resistance to dissociation was essentially complete after the first 20 minutes of imbibition at 28 C, and accompanied activation in vivo of protein synthesis as determined by amino acid incorporation in vitro. Ribosomes from either imbibed or nonimbibed embryos could be dissociated into subunits by 0.5 m KCl. These subunits were separated by density gradient centrifugation, and, if recombined, were active for polyphenylalanine synthesis in vitro. The individual subunits prepared from nonimbibed embryos could be replaced by the corresponding subunit fraction from imbibed embryos without loss of capacity to support polyphenylalanine synthesis. The change in the ease of dissociation of ribosomes appears to be a physiological process, and its possible relationship to the initiation of protein synthesis during seed germination is discussed.  相似文献   

8.
Association of nascent polypeptide with 30S ribosomal subunits   总被引:1,自引:1,他引:0  
1. Crude extracts of Escherichia coli were used to synthesize nascent peptides under the direction of endogenous mRNA and in the presence of radioactive amino acids. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+ concentration has shown that after 2min of incubation approximately 14% of the total labelled protein recovered on the gradient, in association with whole ribosomes, sediments with 30S ribosomal subunits; this value rises to approximately 24% after 30min of incubation. The labelled protein associated with 30S ribosomal subunits is insoluble in hot trichloroacetic acid. 2. Similar results were also obtained in extracts that synthesized polypeptides under the direction of either of the synthetic polyribonucleotides poly(A) or poly(A,G,C,U). In contrast, however, analysis of crude extracts programmed in protein synthesis by poly(U) has indicated that under these conditions 30S ribosomal subunits have no associated polyphenylalanine; similarly there is little associated peptide after programming of extracts by poly(U,C).  相似文献   

9.
Summary Cell lines from Chinese hamster ovary [CHO-K1-D3] and human fibroblast cells [46, XX, 18p-] were mutagenized with N-nitrosomethylurea followed by a selection for cycloheximide resistance. Two mutants resistant against the durg were selected from either wildtype. 80S ribosomes and their ribosomal subunits were isolated from all mutant and wildtype cells. 80S ribosomes reassociated from the isolated subunits were as active as isolated 80S couples in the poly (U) dependent poly (Phe) synthesis. Hybrid 80S ribosomes constructed from subunits of the various cell lines of the same species were fully active, whereas the interspecies 80S hybrids were not active at all in poly (Phe) synthesis.Hybrid 80S ribosomes from subunits of mutant and the ocrresponding wildtype cells were tested in the poly (U) assay in the presence and absence of cycloheximide. The results strikingly indicate that in all four mutant cell lines the resistance against cycloheximide is conferred by the large subunit of cytoplasmic ribosomes.Abbreviations CHM Cycloheximide - CHO Chinese hamster ovarien - FBS foetal bovine serum - Eagle MEM Eagle minimal essential medium - EMS Ethyl-metansulfonate - NMU N-nitrosomethylurea  相似文献   

10.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

11.
Isolated tetrameric particles (166S) derived from the crystalline lattices known to appear in hypothermic chicken embryos consist of mature 80S ribosomes which contain all species of ribosomal RNA and a complete set of ribosomal proteins. Ribosome tetramers are not a special type of polysomes since in solutions of high ionic strengths (500 mM KCl and 50 nM triethanolamine-HCl buffer) containing 5 mM MgCl2 they dissociate into 40S and 60S ribosomal subunits, without the need of puromycin, and at a concentration of Mg++ higher than 3 mM they are not disassembled by mild RNase treatment. Tetramers spontaneously disassemble into 80S monomers when the Mg++ concentration is lowered to 1 mM at relatively low ionic strength. Tetramers failed to couple in vitro puromycin-3H into an acid-insoluble product, indicating the lack of nascent polypeptide chains. Although tetramers have no endogenous messenger RNA activity, they can be programmed in vitro with polyuridylic acid (poly U) to synthesize polyphenylalanine. All ribosomes within a tetramer can accept poly U, without the need of disassembly of the tetramers into monomers or subunits.  相似文献   

12.
80S ribosomes and ribosomal subunits were isolated from fibroblasts, muscle tissues and blood cells of patients with different muscular dystrophies (MD) as well as of controls and were used for in vitro measurement of ribosomal protein synthesis (RPS) in a poly(U)-directed polyphenylalanine synthesis system. The activity of ribosomes from the patients showed a disease-dependent decrease compared to normal controls. Examination of hybrid 80S ribosomes consisting of 40S and 60S subunits of patients and the corresponding control cells revealed that the loss of RPS activity was related to one or both of the ribosomal subunits depending on the type of MD.  相似文献   

13.
The age-related reduction in cell-free synthesis in the free-living nematode Turbatrix aceti is due to a defect in the ribosomes. Addition of young ribosomal wash or use of young medium does not improve the activity of old, run-off ribosomes in the presence of phenylalanine and poly(U). It appears that some of the old ribosomes are incapable of binding the EF-1-GTP-aminoacyl-tRNA complex. These ineffective ribosomes are present in the 80 S (monosomal) fraction. Old ribosomes obtained from polysomes appear to bind normally.  相似文献   

14.
A mixture of 40S and 60S subunits from salt-washed rabbit reticulocyte ribosomes fails to promote methionyl-puromycin synthesis under conditions in which an AUG-40S-Met-tRNAi initiation complex, but not an 80S complex, is readily formed. This suggests that the inability of the system to form methionyl-puromycin is due to failure of the subunits to join. When Artemia salina 60S subunits are substituted for their reticulocyte counterparts, the resulting hybrid system readily forms an 80S initiation complex and synthesizes methionyl-puromycin. Activity of the reticulocyte 60S subunits can be restored by factors IF-M2A and IF-M2B. This suggests that one or both of these factors may be 60S proteins, essential for subunit joining, that may be removed from ribosomes by salt washing procedures.  相似文献   

15.
A method is described for the preparation of active "run-off" 80S ribosomes and 40S and 60S subunits of mouse liver. A polysome preparation was incubated at 37 degrees C for 10 min under the condition for protein synthesis (4 mM Mg2+, 100 mM KCL). Puromycin (10 mM)and 2 M KCL were added to a final concentration of 0.1 mM and 500 mM, respectively, and the reaction mixture was further incubated at 37 degrees C for 10 min. This latter treatment destabilized small polysomes and "stuck" 80S particles, which were remaining after the first incubation, leading to complete release of 40S and 60S particles. Thus, the present method minimized variations in yield of subunits due to polysome preparations and preincubation conditions. The subunits were separated by sucrose density-gradient centrifugation or recovered by precipitation following reassociation into 80S particles (run-off 80S). The reformation of 80S particles from the subunits occurred spontaneously at 5 mM Mg2+ and 100mM KCL. The isolated 40S and 60S subunits, separately, showed low phenylalanine-incorporating activity in the presence of poly(U), but when recombined, polymerized up to 10 phenylalanine residues per couple.  相似文献   

16.
We have elaborated a method for the isolation of ribosomal subunits from fresh unfrozen human placenta containing intact rRNA and a complete set of ribosomal proteins. Activity of 80S ribosomes obtained by reassociation of 40S and 60S subunits in nonenzymatic poly(U)-dependent binding of Phe-tRNA(Phe) was equal to 80% (above 1.5 mol [14C]Phe-tRNA(Phe) is coupled to 1 mol of ribosomes). The activity of 80S ribosomes in poly(U)-directed synthesis of polyphenylalanine was tested in a polysome-free protein-synthesizing system from rabbit reticulocytes. About 100 mol of phenylalanine residue was polymerized by a mole of ribosomes at a rate of 0.83 residues per minute in this system (2 h, 37 degrees C).  相似文献   

17.
Glutaraldehyde fixation was used to analyze the mechanism of reassociation of ribosomal subunits catalyzed by a factor in rat liver cytosol. Unstable 40S–60S couples formed spontaneously in buffer alone; the couples were dissociated by hydrostatic pressure during centrifugation unless they were fixed with glutaraldehyde. Increased numbers of stable 80S ribosomes were formed in the presence of poly (U), Phe-tRNA and G-25 fraction (which contains the initiation factor EIF-1). The factor would seem then to both increase formation of 80S ribosomes and stabilize the monomer. An additional effect of the factor is to inhibit the formation of the unstable 40S–60S couples which form in the presence of Phe-tRNA alone.  相似文献   

18.
Polysomes from the skeletal muscle of normal and dystrophic hamsters were dissociated into ribosomal subunits by treatment with puromycin and the subunits from both strains were reassociated in all possible combinations. When their protein synthesis activity was assayed in a poly(U)-directed cell-free system at a low magnesium concentration, the reassociated ribosomes from dystrophic hamsters were less active than the ribosomes from control animals. The ribosomal defect is a property of the 60S subunit and is due to a ribosomal component rather than to abnormal binding of a non-ribosomal protein.  相似文献   

19.
The age-related reduction in cell-free protein synthesis in the free-living nematode Turbatrix aceti is due to a defect in the ribosomes. Addition of young ribosomal wash or use of young medium does not improve the activity of old, run-off ribosomes in the presence of phenylalanine and poly(U). It appears that some of the old ribosomes are incapable of binding the EF-1-GTP-aminoacyl-tRNA complex. These ineffective ribosomes are present in the 80 S (monosomal) fraction. Old ribosomes obtained from polysomes appear to bind normally.  相似文献   

20.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号