首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.  相似文献   

2.
Alcaligenes eutrophus CH34 used benzoate as a sole source of carbon and energy, degrading it through the 3-oxoadipate pathway. All the enzymes required for this degradation were shown to be encoded by chromosomal genes. Catechol 1,2-dioxygenase activity was induced by benzoate, catechol, 4-chlorocatechol, and muconate. The enzyme is most likely a homodimer, with an apparent molecular weight of 76,000 ± 500. According to several criteria, its properties are intermediate between those of catechol 1,2-dioxygenases (CatA) and chlorocatechol 1,2-dioxygenases (ClcA). The determined K m for catechol is the lowest among known catechol and chlorocatechol dioxygenases. Similar K m values were found for para-substituted catechols, although the catalytic constants were much lower. The catechol 1,2-dioxygenase from strain CH34 is unique in its property to transform tetrachlorocatechol; however, excess substrate led to a marked reversible inhibition. Some meta- and multi-substituted catechols behaved similarly. The determined K m (or K i) values for para- or meta-substituted catechols suggest that the presence of an electron-withdrawing substituent at one of these positions results in a higher affinity of the enzyme for the ligand. Results of studies of recognition by the enzyme of various nonmetabolised aromatic compounds are also discussed. Received: 20 November 1996 / Accepted: 11 April 1996  相似文献   

3.
李朔  许楹  周宁一 《微生物学通报》2017,44(7):1513-1524
【目的】研究Sphingomonas sp.YL-JM2C菌株的生长特性,确定以三氯卡班作为碳源的生长情况。挖掘菌株YL-JM2C潜在的邻苯二酚1,2-双加氧酶及邻苯二酚2,3-双加氧酶基因,在大肠杆菌(Escherichia coli)中异源表达邻苯二酚双加氧酶基因并研究其酶学性质。【方法】优化S.sp.YL-JM2C菌株以三氯卡班作为碳源时的培养条件,并利用全自动生长曲线测定仪测定菌株生长情况,绘制生长曲线。通过生物信息学方法挖掘潜在的邻苯二酚双加氧酶基因,并分别在Escherichia coli BL21(DE3)中进行异源表达,通过AKTA快速纯化系统纯化蛋白,分别以邻苯二酚、3-和4-氯邻苯二酚为底物检测重组蛋白的酶学特性。【结果】菌株在pH为7.0-7.5时生长最优。在以浓度为4-8 mg/L的三氯卡班做为底物时,菌株适宜生长。当R2A培养基仅含有0.01%酵母提取物和无机盐时,加入终浓度为4 mg/L的三氯卡班可促进菌株生长。挖掘到6个潜在的邻苯二酚双加氧酶基因stcA1、stcA2、stcA3、stcE1、stcE2和stcE3,表达并通过粗酶液分析证明其中5个基因stcA1、stcA2、stcA3、stcE1和stcE2编码的酶均具有邻苯二酚双加氧酶和氯邻苯二酚双加氧酶的活性;纯化酶的底物范围研究揭示了StcA1、StcA2和StcA3均属于Ⅱ型邻苯二酚1,2-双加氧酶,StcE1和StcE2为两个新型邻苯二酚2,3-双加氧酶;它们酶动力学分析研究证明了5个酶对邻苯二酚的亲和力和催化效率最高,4-氯邻苯二酚次之。【结论】在同一菌株中发现了5个具有功能的邻苯二酚双加氧酶基因,stcA1、stcA2和stcA3编码的酶均属于Ⅱ型邻苯二酚1,2-双加氧酶,stcE1和stcE2为两个新型邻苯二酚2,3-双加氧酶编码基因。5个酶均具有催化邻苯二酚和氯邻苯二酚开环反应的功能,这为更好地理解微生物基因组内代谢邻苯二酚及其衍生物氯代邻苯二酚基因的多样性奠定了基础。  相似文献   

4.
A purification procedure for a new kind of extradiol dioxygenase, termed chlorocatechol 2,3-dioxygenase, that converts 3-chlorocatechol productively was developed. Structural and kinetic properties of the enzyme, which is part of the degradative pathway used for growth of Pseudomonas putida GJ31 with chlorobenzene, were investigated. The enzyme has a subunit molecular mass of 33.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the native Mr value under nondenaturating conditions by gel filtration gave a molecular mass of 135 ± 10 kDa, indicating a homotetrameric enzyme structure (4 × 33.4 kDa). The pI of the enzyme was estimated to be 7.1 ± 0.1. The N-terminal amino acid sequence (43 residues) of the enzyme was determined and exhibits 70 to 42% identity with other extradiol dioxygenases. Fe(II) seems to be a cofactor of the enzyme, as it is for other catechol 2,3-dioxygenases. In contrast to other extradiol dioxygenases, the enzyme exhibited great sensitivity to temperatures above 40°C. The reactivity of this enzyme toward various substituted catechols, especially 3-chlorocatechol, was different from that observed for other catechol 2,3-dioxygenases. Stoichiometric displacement of chloride occurred from 3-chlorocatechol, leading to the production of 2-hydroxymuconate.  相似文献   

5.
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930–5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2,3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.  相似文献   

6.
Promotion of peroxidase activity in the cell wall of Nicotiana   总被引:3,自引:1,他引:2       下载免费PDF全文
Peroxidase catalyzes the oxidation of indole-3-acetic acid. The primary products of this reaction stimulate growth in plants. Therefore, our concept is that an increase in peroxidase activity will increase the effect of indole-3-acetic acid as a growth hormone. Our objective was to study the effect of 2,3,5-triiodobenzoic acid, a growth regulator, on isoperoxidases in the cell wall and cytoplasm of Nicotiana. Isoperoxidases from the cell wall and cytoplasmic fractions were separated by acrylamide gel electrophoresis. We found that 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase peroxidase activity in the cell wall. Since both 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase the activity of the same isoperoxidase, we conclude that 2,3,5-triiodobenzoic acid synergizes rather than antagonizes auxin action, and we suggest that this increase in indole-3-acetic acid oxidase activity sensitizes plant tissues to auxin.  相似文献   

7.
Two Pseudomonas sp. strains, capable of growth on chlorinated benzenes as the sole source of carbon and energy, were isolated by selective enrichment from soil samples of an industrial waste deposit. Strain PS12 grew on monochlorobenzene, all three isomeric dichlorobenzenes, and 1,2,4-trichlorobenzene (1,2,4-TCB). Strain PS14 additionally used 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB). During growth on these compounds both strains released stoichiometric amounts of chloride ions. The first steps of the catabolism of 1,2,4-TCB and 1,2,4,5-TeCB proceeded via dioxygenation of the aromatic nuclei and furnished 3,4,6-trichlorocatechol. The intermediary cis-3,4,6-trichloro-1,2-dihydroxycyclohexa-3,5-diene (TCB dihydrodiol) formed from 1,2,4-TCB was rearomatized by an NAD+-dependent dihydrodiol dehydrogenase activity, while in the case of 1,2,4,5-TeCB oxidation the catechol was obviously produced by spontaneous elimination of hydrogen chloride from the initially formed 1,3,4,6-tetrachloro-1,2-dihydroxycyclohexa-3,5-diene. Subsequent ortho cleavage was catalyzed by a type II catechol 1,2-dioxygenase producing the corresponding 2,3,5-trichloromuconate which was channeled into the tricarboxylic acid pathway via an ordinary degradation sequence, which in the present case included 2-chloro-3-oxoadipate. From the structure-related compound 2,4,5-trichloronitrobenzene the nitro group was released as nitrite, leaving the above metabolite as 3,4,6-trichlorocatechol. Enzyme activities for the oxidation of chlorobenzenes and halogenated metabolites were induced by both strains during growth on these haloaromatics and, to a considerable extent, during growth of strain PS12 on acetate.  相似文献   

8.
A bacterial isolate, Pseudomonas aeruginosa 3mT, exhibited the ability to degrade high concentrations of 3-chlorobenzoate (3-CBA, 8 g l-1) and 4-chlorobenzoate (4-CBA 12 g l-1) (Ajithkumar 1998). In this study, by delineating the initial biochemical steps involved in the degradation of these compounds, we investigated how this strain can do so well. Resting cells, permeabilised cells as well as cell-free extracts failed to dechlorinate both 3-CBA and 4-CBA under anaerobic conditions, whereas the former two readily degraded both compounds under aerobic conditions. Accumulation of any intermediary metabolite was not observed during growth as well as reaction with resting cells under highly aerated conditions. However, on modification of reaction conditions, 3-chlorocatechol (3-CC) and 4-chlorocatechol (4-CC) accumulated in 3-CBA and 4-CBA flasks, respectively. Fairly high titres of pyrocatechase II (chlorocatechol 1,2-dioxygenase) activity were obtained in extracts of cells grown on 3-CBA and 4-CBA. Meta-pyrocatechase (catechol 2,3-dioxygenase) activity against4-CC and catechol, but not against 3-CC, was also detected in low titres. Accumulation of small amounts of 2-chloro-5-hydroxy muconic semialdehyde, the meta-cleavage product of 4-CC, was detected in the medium, when 4-CBA concentration was 4 mM or greater, indicating the presence of a minor meta-pathway in strain 3mT. However, 3-CBA exclusively, and more than 99% of 4-CBA were degraded through the formation of the respective chlorocatechol, via a modified ortho-pathway. This defies the traditional view that the microbes that follow chlorocatechol pathways are not very good degraders of chlorobenzoates. 4-Hydroxybenzoatewas readily (and 3-hydroxybenzoate to a lesser extent) degraded by the strain, through the formation of protocatechuate and gentisate, respectively, as intermediary dihydroxy metabolites.  相似文献   

9.
In the chlorobenzene degrader Pseudomonas putida GJ31, chlorocatechol is formed as an intermediate and cleaved by a meta-cleavage extradiol chlorocatechol dioxygenase, which has previously been shown to be exceptionally resistant to inactivation by substituted catechols. The gene encoding this dioxygenase ( cbzE) is preceded by a gene ( cbzT) potentially encoding a ferredoxin, the function of which was studied. The cbzT gene product was overproduced in Escherichia coli and purified in recombinant form. Two homologous proteins, CdoT and AtdS, encoded by genes identified in strains degrading nitrobenzene and aniline, respectively, were also purified and characterized. All three proteins showed spectroscopic properties typical for [2Fe-2S] ferredoxins. The chlorocatechol dioxygenase from strain GJ31 (CbzE) was fully inactivated when 4-methylcatechol was used as substrate. Inactivated CbzE could be rapidly reactivated in vitro in the presence of purified CbzT and a source of reductant. It is inferred that the ability of strain GJ31 to metabolize both chlorobenzene and toluene might depend on the regeneration of the chlorocatechol dioxygenase activity mediated by CbzT. Three CbzT-like ferredoxins, including AtdS, were found to be competent in the reactivation of CbzE, whereas XylT, a protein known to mediate reactivation of the catechol dioxygenase from P. putida mt2 (XylE), was ineffective. Accordingly, CbzT formed a covalent complex with CbzE when cross-linked with a carbodiimide, whereas XylT did not. In the reverse situation, CbzT was found to reactivate XylE as efficiently as XylT and formed an heterologous covalent complex with this enzyme upon cross-linking. We conclude that CbzT, CdoT and AtdS are isofunctional ferredoxins that appear to be involved in the reactivation of their cognate catechol dioxygenases. Based on primary structure comparisons, residues of the ferredoxins possibly involved in the molecular interaction with catechol dioxygenases were identified and their significance is discussed.  相似文献   

10.
Induction of modified ortho-pathway enzymes (catechol 1.2-dioxygenase II, muconate cycloisomerase II, dienelactone hydrolase, and maleylacetate reductase) was found in Pseudomonas putida 87, when 3-chlorobenzoic acid was used as a sole carbon and energy source. Catechol 1.2-dioxygenase II, the key chlorocatechol cleaving enzyme, was purified and characterized. The enzyme molecular mass as determined by gel filtration was 65,000 Da; the minimum molecular mass upon SDS electrophoresis was 33,000 Da. The pH and temperature optima for the enzyme were 7.2-7.8 and 35 degrees C, respectively. The highest stability of catechol 1.2-dioxygenase II upon storage was observed in 50 mM Tris-HCl buffer pH 7.8 at 4 degrees C. The relative values of Vmax for catechol 1.2-dioxygenase II with 3-chloro-, 4-chloro-, and 3.5-dichlorocatechols were 28%, 50%, and 41% of those for catechol. The enzyme affinity for chlorocatechols was 3-9 times higher than for methylcatechols and 10-20 times higher than for unsubstituted catechol.  相似文献   

11.
Liao Y  Zhou X  Yu J  Cao Y  Li X  Kuai B 《Plant physiology》2006,142(2):620-628
Transgenic exploitation of bacterial degradative genes in plants has been considered a favorable strategy for degrading organic pollutants in the environment. The aromatic ring characteristic of these pollutants is mainly responsible for their recalcitrance to degradation. In this study, a Plesiomonas-derived chlorocatechol 1,2-dioxygenase (TfdC) gene (tfdC), capable of cleaving the aromatic ring, was introduced into Arabidopsis (Arabidopsis thaliana). Morphology and growth of transgenic plants are indistinguishable from those of wild-type plants. In contrast, they show significantly enhanced tolerances to catechol. Transgenic plants also exhibit strikingly higher capabilities of removing catechol from their media and high efficiencies of converting catechol to cis,cis-muconic acid. As far-less-than-calculated amounts of cis,cis-muconic acid were accumulated within the transgenic plants, existence of endogenous TfdD- and TfdE-like activities was postulated and, subsequently, putative orthologs of bacterial tfdD and tfdE were detected in Arabidopsis. However, no TfdC activity and no putative orthologs of either tfdC or tfdF were identified. This work indicates that the TfdC activity, conferred by tfdC in transgenic Arabidopsis, is a key requirement for phytoremoval and degradation of catechol, and also suggests that microbial degradative genes may be transgenically exploited in plants for bioremediation of aromatic pollutants in the environment.  相似文献   

12.
Pseudomonas sp. strain B-300, which is able to utilize 2-chlorobenzoic acid, was isolated from a soil sample by enrichment culture. This strain was shown to grow on 2-chlorobenzoic acid and to completely degrade the substrate with concomitant chlorine ion release. Concentrations of 2-chlorobenzoic acid higher than 0.5% (w/v) were toxic to the cells. Our study also suggested that in the presence of glucose, 2-chlorobenzoic acid is converted to catechol or chlorocatechol; these are in turn transformed to muconic and chloromuconic acid, respectively, suggesting a repression by glucose of some of the degradation pathway enzymes. A similar scheme was already described for 3-chlorobenzoate degradation by pAC25 plasmid.  相似文献   

13.
Evolution of chlorocatechol catabolic pathways   总被引:15,自引:0,他引:15  
The aerobic bacterial degradation of chloroaromatic compounds often involves chlorosubstituted catechols as central intermediates. They are converted to 3-oxoadipate in a series of reactions similar to that for catechol catabolism and therefore designated as modifiedortho-cleavage pathway. Among the enzymes of this catabolic route, the chlorocatechol 1,2-dioxygenases are known to have a relaxed substrate specificity. In contrast, several chloromuconate cycloisomerases are more specific, and the dienelactone hydrolases of chlorocatechol catabolic pathways do not even convert the corresponding intermediate of catechol degradation, 3-oxoadipate enol-lactone. While the sequences of chlorocatechol 1,2-dioxygenases and chloromuconate cycloisomerases are very similar to those of catechol 1,2-dioxygenases and muconate cycloisomerases, respectively, the relationship between dienelactone hydrolases and 3-oxoadipate enol-lactone hydrolases is more distant. They seem to share an / hydrolase fold, but the sequences comprising the fold are quite dissimilar. Therefore, for chlorocatechol catabolism, dienelactone hydrolases might have been recruited from some other, preexisting pathway. Their relationship to dienelactone (hydrolases identified in 4-fluorobenzoate utilizing strains ofAlcaligenes andBurkholderia (Pseudomonas) cepacia is investigated). Sequence evidence suggests that the chlorocatechol catabolic operons of the plasmids pJP4, pAC27, and pP51 have been derived from a common precursor. The latter seems to have evolved for the purpose of halocatechol catabolism, and may be considerably older than the chemical industry.  相似文献   

14.
Degradation of para-toluate by Rhodococcus opacus 1cp was investigated. Activities of the key enzymes of this process, catechol 1,2-dioxygenase and muconate cycloisomerase, are detected in this microorganism. Growth on p-toluate was accompanied by induction of two catechol 1,2-dioxygenases. The substrate specificity and physicochemical properties of one enzyme are identical to those of chlorocatechol 1,2-dioxygenase; induction of the latter enzyme was observed during R. opacus 1cp growth on 4-chlorophenol. The other enzyme isolated from the biomass grown on p-toluate exhibited lower rate of chlorinated substrate cleavage compared to the catechol substrate. However, this enzyme is not identical to the catechol 1,2-dioxygenase cloned in this strain within the benzoate catabolism operon. This supports the hypothesis on the existence of multiple forms of dioxygenases as adaptive reactions of microorganisms in response to environmental stress.  相似文献   

15.
In vitro auxin binding to cellular membranes of cucumber fruits   总被引:2,自引:2,他引:0       下载免费PDF全文
Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).  相似文献   

16.
17.
Multicomponent phenol hydroxylases (mPHs) are diiron enzymes that use molecular oxygen to hydroxylate a variety of phenolic compounds. The DNA sequence of the alpha subunit (large subunit) of mPH from 4-chlorophenol (4-CP)-degrading bacterial strain PT3 was determined. Strain PT3 was isolated from oil-contaminated soil samples adjacent to automobile workshops and oil stations after enrichment and establishment of a chlorophenol-degrading consortium. Strain PT3 was identified as a member of Pseudomonas sp. based on sequence analysis of the 16S rRNA gene fragment. The 4-CP catabolic pathway by strain PT3 was tentatively proposed to proceed via a meta-cleavage pathway after hydroxylation to the corresponding chlorocatechol. This hypothesis was supported by polymerase chain reaction (PCR) detection of the LmPH encoding sequence and UV/VIS spectrophotometric analysis of the culture filtrate showing accumulation of 5-chloro-2-hydroxymuconic semialdehyde (5-CHMS) with λmax 380. The detection of catabolic genes involved in 4-CP degradation by PCR showed the presence of both mPH and catechol 2,3-dioxygenase (C23DO). Nucleotide sequence analysis of the alpha subunit of mPH from strain PT3 revealed specific phylogenetic grouping to known mPH. The metal coordination encoding regions from strain PT3 were found to be conserved with those from the homologous dinuclear oxo-iron bacterial monooxygenases. Two DE(D)XRH motifs was detected in LmPH of strain PT3 within an approximate 100 amino acid interval, a typical arrangement characteristic of most known PHs.  相似文献   

18.
1. An organism isolated from sewage and identified as an Alcaligenes sp. utilized benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate as sole source of carbon and energy for growth. Higher alkylbenzenesulphonate homologues and the hydrocarbons, benzene, toluene, phenylethane and 1-phenyldodecane were not utilized. 2. 2-Phenylpropanesulphonate was metabolized to 4-isopropylcatechol. 3. 1-Phenylpropanesulphonate was metabolized to an ortho-diol, which was tentatively identified, in the absence of an authentic specimen, as 4-n-propylcatechol. 4. In the presence of 4-isopropylcatechol, which inhibited catechol 2,3-dioxygenase, 4-ethylcatechol accumulated in cultures growing on phenylethane-p-sulphonate. 5. Authentic samples of catechol, 3-methylcatechol, 4-methylcatechol, 4-ethylcatechol and 3-isopropylcatechol were oxidized by heat-treated extracts to the corresponding 2-hydroxyalkylmuconic semialdehydes. Ring cleavage occurred between C-2 and C-3. 6. The catechol derived from 1-phenylpropanesulphonate was oxygenated by catechol 2,3-dioxygenase to a compound with all the properties of a 2-hydroxyalkylmuconic semialdehyde, but it was not rigorously identified. 7. The catechol 2,3-dioxygenase induced by growth on benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate showed a constant ratio of specific activities with catechol, 3-methylcatechol, 4-methylcatechol and 4-ethylcatechol that was independent of the growth substrate. At 60°C, activity towards these substrates declined at an identical first-order rate. 8. Enzymes of the `ortho' pathway of catechol metabolism were present in small amounts in cells grown on benzenesulphonate, toluene-p-sulphonate or phenylethane-p-sulphonate. 9. The catechol 1,2-dioxygenase oxidized the alkylcatechols, but the rates and the total extents of oxidation were less than for catechol itself. The oxidation products of these alkylcatechols were not further metabolized.  相似文献   

19.
20.
Methylsalicylate-grown cells of Pseudomonas sp. WR 401 cometabolized 3-, 4- and 5-substituted halosalicylates to the corresponding halocatechols. Further degradation was unproductive due to the presence of high levels of catechol 2,3-dioxygenase. This strain acquired the ability to utilize 3-chlorobenzoate following acquisition of genes from Pseudomonas sp. B 13 which are necessary for the assimilation of chlorocatechols. This derivative (WR 4011) was unable to use 4- or 5-chlorosalicylates. Derivatives able to use these compounds were obtained by plating WR 4011 on 5-chlorosalicylate minimal medium; one such derivative was designated WR 4016. The acquisition of this property was accompanied by concomitant loss of the methylsalicylate phenotype. During growth on 4- or 5-chlorosalicylate the typical enzymes of chlorocatechol assimilation were detected in cell free extracts, whereas catechol 2,3-dioxygenase activity was not induced. Repeated subcultivation of WR 4016 in the presence of 3-chlorosalicylate produced variants (WR 4016-1) which grew on all three isomers.Abbreviations CS chlorosalicylate - MS methylsalicylate - 3CB 3-chlorobenzoate - nalr nalidixin-resistant - strr streptomycin-resistant - C230 catechol-2,3-dioxygenase - C120 catechol-1,2-dioxygenase - HMSH 2-hydroxymuconic semialdehyde hydrolase or 2-hydroxy-6-oxo-hexa-2,4-dienoic acid-hydrolase - HMSD 2-hydroxymuconic semialdehyde dehydrogenase - Dienlacton hydrolase 4-carboxymethylenebut-2-en-4-olide hydrolase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号