首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-C's main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-B's functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.  相似文献   

2.
One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability.  相似文献   

3.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

4.
The captive bubble tensiometer was employed to study interactions of phospholipid (PL) mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) at 50 microg/ml with physiological levels of the surfactant protein (SP) A SP-B, and SP-C alone and in combination at 37 degrees C. All surfactant proteins enhanced lipid adsorption to equilibrium surface tension (gamma), with SP-C being most effective. Kinetics were consistent with the presence of two adsorption phases. Under the conditions employed, SP-A did not affect the rate of film formation in the presence of SP-B or SP-C. Little difference in gamma(min) was observed between the acidic POPG and the neutral POPC systems with SP-B or SP-C with and without SP-A. However, gamma(max) was lower with the acidic POPG system during dynamic, but not during quasi-static, cycling. Considerably lower compression ratios were required to generate low gamma(min) values with SP-B than SP-C. DPPC-POPG-SP-B was superior to the neutral POPC-SP-B system. Although SP-A had little effect on film formation with SP-B, surface activity during compression was enhanced with both PL systems. In the presence of SP-C, lower compression ratios were required with the acidic system, and with this mixture, SP-A addition adversely affected surface activity. The results suggest specific interactions between SP-B and phosphatidylglycerol, and between SP-B and SP-A. These observations are consistent with the presence of a surface-associated surfactant reservoir which is involved in generating low gamma during film compression and lipid respreading during film expansion.  相似文献   

5.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

6.
Attenuated total reflection Fourier transform infrared spectroscopy was used to investigate the secondary structure of the surfactant protein SP-B. Nearly half of the polypeptide chain is folded in an alpha-helical conformation. No significant change of the secondary structure content was observed when the protein is associated to a lipid bilayer of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) or of dipalmitoylphosphatidylglycerol (DPPG). The parameters related to the gamma w(CH2) vibration of the saturated acyl chains reveal no modification of the conformation or orientation of the lipids in the presence of SP-B. A model of orientation of the protein at the lipid/water interface is proposed. In this model, electrostatic interactions between charged residues of SP-B and polar headgroups of PG, and the presence of small hydrophobic alpha-helical peptide stretches slightly inside the bilayers, would maintain SP-B at the membrane surface.  相似文献   

7.
In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids.  相似文献   

8.
The role of surfactant proteins in DPPC enrichment of surface films   总被引:2,自引:0,他引:2       下载免费PDF全文
A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observed. Spread phospholipid films containing 50% DPPC over a subphase containing 50% DPPC vesicles did not form stable surface films with a low minimum surface tension. Addition of surfactant protein B (SP-B) to the surface film led to a progressive decrease in minimum surface tension toward 1 mN/m upon cycling, indicating an enrichment in DPPC. Surfactant protein C (SP-C) had no such detectable refining effect on the film. Surfactant protein A (SP-A) had a positive effect on refinement when it was present in the subphase. However, this effect was only observed when SP-A was combined with SP-B and incubated with subphase vesicles before addition to the air bubble containing sample chamber. Comparison of spread films with adsorbed films indicated that refinement induced by SP-B occurs by selective removal of non-DPPC lipids upon cycling. SP-A, combined with SP-B, induces a selective adsorption of DPPC from subphase vesicles into the surface film. This is achieved by formation of large lipid structures which might resemble tubular myelin.  相似文献   

9.
Proteolipid in bovine lung surfactant: its role in surfactant function   总被引:14,自引:0,他引:14  
The chemical and biophysical properties of the proteins in the lipid extracts of lung surfactant have not clearly been determined. These proteins were isolated from lung surfactant lipids by Sephadex LH-20 chromatography and purified with silicic acid chromatography followed by dialysis against organic solvents. The proteolipid thus obtained had a protein to phospholipid ratio of 3 to 1 (w/w). The proteolipid apoprotein had a nominal molecular weight of ca. 5 kDa. We evaluated the functional role of this proteolipid by combining it with proteolipid-depleted surfactant lipids or synthetic dipalmitoylphosphatidylcholine (DPPC) and then measuring with a pulsating bubble surfactometer. The proteolipid and DPPC recombinant reproduced the surface activity of natural lung surfactant. We conclude that this 5 kDa proteolipid apoprotein is a functionally important constituent of lung surfactant.  相似文献   

10.
The temperature dependence of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) multilayers, reconstituted with various synthetic peptides for modeling human lung surfactant, was monitored by vibrational Raman spectroscopy. The synthetic peptides consisted, respectively, of residues 59-81 of the human surfactant protein SP-B and 21 amino acid residue peptides containing repeating units of arginine separated by either four or eight leucines (RL4 or RL8). Each peptide demonstrated the ability to reduce significantly the surface tension of analogues of the phospholipid mixture used in the Raman studies. Raman spectroscopic integrated band intensities and relative peak height intensity ratios, two spectral parameters used to determine bilayer disorder, provided sensitive probes for characterizing multilayer perturbations in the reconstituted liposomes. Temperature profiles derived from the various Raman intensity parameters for the 3100-2800-cm-1 carbon-hydrogen (C-H) stretching mode region, a spectral interval representative of acyl chain vibrations, reflected lipid reorganizations due to the bilayer interactions of these peptides. For the three reconstituted multilamellar surfactant systems, the gel-to-liquid-crystalline phase-transition temperatures Tm, defined by acyl chain C-H stretching mode order/disorder parameters, increased from 35 degrees C in the peptide free system to 37-38 degrees C, indicating increased lipid headgroup constraints for the model liposomes. Although the values of Tm were similar for the three recombinant lipid/peptide assemblies, individual phase-transition cooperativities varied significantly between systems and between spectroscopically derived order/disorder parameters.  相似文献   

11.
Pulmonary surfactant provides for a lipid rich film at the lung air-water interface, which prevents alveolar collapse at the end of expiration. The films are likely enriched in the major surfactant component dipalmitoylphosphatidylcholine (DPPC), which, due to its saturated fatty acid chains, can withstand high surface pressures up to 70 mN/m, thereby reducing surface tension in that interface to very low values (close to 1 mN/m). Despite many experimental measurements in situ, as well as in vitro for native lung surfactant films, the exact mechanism by which other fluid lipid components of surfactant, in combination with surfactant proteins, allow for such low surface tension values to be reached is not well understood. We have performed molecular dynamics simulation of films composed of DPPC alone and in mixtures with other fluid and acidic lipid components of surfactant at the high densities relevant to the low surface tension regime. 10-50 ns simulations were performed with the software GROMACS, with 40-64 lipids molecules plus water, using 5 different lipid compositions and 7 different areas per lipid. The primary focus was to learn how differences in lipid composition affect the response of the monolayer to compression, such as the development of curvature or the loss of lipids to the exterior of the monolayer. The systems studied exhibit features of two of the major schools of thought of lung surfactant mechanisms, in that although unsaturated lipids did not appear to prevent the monolayers from achieving high surface pressure, POPG did appear to be selectively squeezed out of the DPPC/POPG monolayers at high lipid densities.  相似文献   

12.
An often-used model lung surfactant containing dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and the surfactant protein C (SP-C) was analyzed as Langmuir-Blodgett film by spatially resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) to directly visualize the formation and composition of domains. Binary lipid and lipid/SP-C systems were probed for comparison. TOF-SIMS spectra revealed positive secondary ions (SI) characteristic for DPPC and SP-C, but not for DPPG. SI mapping results in images with domain structures in DPPC/DPPG and DPPG/SP-C, but not in DPPC/SP-C films. We are able to distinguish between the fluid and condensed areas probably due to a matrix effect. These findings correspond with other imaging techniques, fluorescence light microscopy (FLM), scanning force microscopy (SFM), and silver decoration. The ternary mixture DPPC/DPPG/SP-C transferred from the collapse region exhibited SP-C-rich domains surrounding pure lipid areas. The results obtained are in full accordance with our earlier SFM picture of layered protrusions that serve as a compressed reservoir for surfactant material during expansion. Our study demonstrates once more that SP-C plays a unique role in the respiration process.  相似文献   

13.
Surfactant protein A (SP-A) is an octadecameric hydrophilic glycoprotein and is the major protein component of pulmonary surfactant. This protein complex plays several roles in the body, such as regulation of surfactant secretion, recycling and adsorption of surfactant lipids, and non-serum-induced immune response. Many of SP-A's activities are dependent upon the presence of cations, especially calcium. Here, we have studiedin vitrothe effect of cations on the interaction of purified bovine SP-A with phospholipid vesicles made of dipalmitoylphosphatidylcholine and unsaturated phosphatidylcholine. We have found that SP-A octadecamers exist in an “opened-bouquet” conformation in the absence of cations and interact with lipid membranes via one or two globular headgroups. Calcium-induced structural changes in SP-A lead to the formation of a clearly identifiable stem in a “closed-bouquet” conformation. This change, in turn, seemingly results in all of SP-A's globular headgroups interacting with the lipid membrane surface and with the stem pointing away from the membrane surface. These results represent direct evidence that the headgroups of SP-A (comprising carbohydrate recognition domains), and not the stem (comprising the amino-terminus and collagen-like region), interact with lipid bilayers. Our data support models of tubular myelin in which the headgroups, not the tails, interact with the lipid walls of the lattice.  相似文献   

14.
Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.  相似文献   

15.
Pulmonary alveolar type II cells synthesize, secrete, and recycle the components of pulmonary surfactant. In this report we present evidence that dipalmitoylphosphatidylcholine is a potent inhibitor of surfactant lipid secretion by type II cells. Monoenoic and dienoic phosphatidylcholines with fatty acids of 16 or 18 carbons are ineffective as inhibitors of surfactant lipid secretion. In contrast, disaturated phosphatidylcholines, with either symmetric or asymmetric pairs of fatty acids of 14, 16, or 18 carbons, exhibit inhibition of surfactant secretion that correlates extremely well with the phase transition temperature (Tc) of the phospholipid. The inhibitory activity of dipalmitoylphosphatidylcholine is not dependent upon lipid stereochemistry. N-Methylated derivatives of dipalmitoylphosphatidylethanolamine are significantly less effective than phosphatidylcholine as inhibitors. Phosphatidylcholines below their phase transition temperature are inhibitors of surfactant secretion, whereas those above their phase transition temperature are either ineffective or weakly inhibitory. The phase transition dependence of inhibition is observed when type II cells are incubated at 37 degrees C with different species of phosphatidylcholine. In addition, if type II cells are stimulated to secrete at different temperatures the efficacy of a given phospholipid as an inhibitor is dependent on its relationship to Tc (i.e. dipalmitoylphosphatidylcholine with a Tc of 41 degrees C significantly inhibits secretion at 37 degrees C but not at 42 degrees C). Inhibition of surfactant secretion by dipalmitoylphosphatidylcholine is abrogated when it is incorporated into the same liposome with dioleoylphosphatidylcholine as a 50:50 mixture. In contrast, the simultaneous addition of two separate populations of liposomes, one composed of dipalmitoylphosphatidylcholine and the other composed of dioleoylphosphatidylcholine, does not significantly alter the inhibitory activity found with dipalmitoylphosphatidylcholine alone. These data provide compelling evidence that the physical state of phosphatidylcholine can regulate surfactant secretion from alveolar type II cells and suggest a unique mechanism for regulating exocytosis in the alveolus of the lung.  相似文献   

16.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics.  相似文献   

17.
The pulmonary surfactant system constitutes an excellent example of how dynamic membrane polymorphism governs some biological functions through specific lipid–lipid, lipid–protein and protein–protein interactions assembled in highly differentiated cells. Lipid–protein surfactant complexes are assembled in alveolar pneumocytes in the form of tightly packed membranes, which are stored in specialized organelles called lamellar bodies (LB). Upon secretion of LBs, surfactant develops a membrane-based network that covers rapidly and efficiently the whole respiratory surface. This membrane-based surface layer is organized in a way that permits efficient gas exchange while optimizing the encounter of many different molecules and cells at the epithelial surface, in a cross-talk essential to keep the whole organism safe from potential pathogenic invaders.The present review summarizes what is known about the structure of the different forms of surfactant, with special emphasis on current models of the molecular organization of surfactant membrane components. The architecture and the behaviour shown by surfactant structures in vivo are interpreted, to some extent, from the interactions and the properties exhibited by different surfactant models as they have been studied in vitro, particularly addressing the possible role played by surfactant proteins. However, the limitations in structural complexity and biophysical performance of surfactant preparations reconstituted in vitro will be highlighted in particular, to allow for a proper evaluation of the significance of the experimental model systems used so far to study structure–function relationships in surfactant, and to define future challenges in the design and production of more efficient clinical surfactants.  相似文献   

18.
The hydrophobic pulmonary surfactant protein SP-C has been isolated from porcine lung surfactant, and it has been incorporated into monolayers of dipalmitoylphosphatidylcholine (DPPC). The monolayers, which contained 1 mol% of a fluorescently-labeled phosphatidylcholine, were observed under various states of compression in an epifluorescence surface balance. SP-C altered the packing arrangements of DPPC in the monolayer, causing the production of many more, smaller condensed lipid domains in its presence than in its absence.  相似文献   

19.
20.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号