首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Golgi complex is a central link related to each kind of organella in cellular metabolic process, its morphological changes are often concerned with the cell differentiation and functional state. The Golgi complexes in tumour cells have the characteristics of poor development and non-typical structure, and closely related to their pathological differential degree. For this reason, having based on appraising the differential effect of human gastric adenocarcinoma cell line MGc 80-3 induced by dBcAMP in vitro, we had made a systematic observation on the changes of Golgi complex during the malignant phenotypical reversion of MGc 80-3 cells, in order to inquire into the relationship between the structural and functional changes of Golgi complex and the malignant phenotypic reversion of cancer cells. It was revealed by ultrathin sectioning and freeze-etching electron microscopy that, in MGc 80-3 cells, there were a few Golgi complexes, their volume was small, the amounts of saccule were few, they arranged irregularly, expanded and inflated, and the intramembranous particles on saccule were rare and not well-distributed. It displayed a non-developmental and non-typical structural state of Golgi complex. But after induced treatment with dBcAMP, the Golgi complexes had grown in number and distributed concentrated, , their volume enlarged, the saccules increased and arranged regularly, and the intermembranous particles on saccules were plentiful and well-distributed. They had restored a well-developed and typical structure of Golgi complex similar to that of the primary culture cell of human normal gastric mucous membrane. It showed that Golgi complex had further changed into a quite developed state during the induced differentiation. This alteration not only inhibited the malignant secretory activity of gastric carcinoma cells but also played a certain regulative role in the changes of the surface components of cancer cells. The structural and functional changes of Golgi complex were considered to be an important expression in the malignant phenotypical reversion of cancer cells, it had an important influence on the differentiation of cancer cells from malignant to normal direction.  相似文献   

2.
MGc 80-3细胞高尔基体呈发育差、结构不典型状态,但经dBcAMP诱导后,细胞内高尔基体组数增多、分布集中、体积增大,高尔基囊数目增多、排列规则,囊的膜内颗粒增多、分布较为均匀,恢复为与其相应正常细胞相似、发育良好的典型高尔基体结构。这种变化不仅抑制了胃癌细胞的恶性分泌活动,同时对细胞表面成份的变化也起着一定的调节作用。认为高尔基体结构与功能向典型方向的转??变是癌细胞恶性表型逆转的一种重要表现,对于癌细胞由恶性向正常方向的分化具有重要影响。  相似文献   

3.
Cyclic Guanosine Monophosphate in Primary Cultures of Glial Cells   总被引:1,自引:0,他引:1  
Cyclic GMP was found in primary cultures of glial cells obtained by dissociation of newborn mouse brain hemispheres. Its basal level (0.52 pmoles/mg cell protein) was as high as that found in adult mouse brain cortex but 10 times lower than in cerebellum. When glia were grown in the presence of dBcAMP, astrocytes changed their morphology; cGMP level increased and reached about 8 to 10 times the basal value. This increase was dose dependant with cAMP and was enhanced by the presence of 5mM Theophylline. Two hypothesis are discussed, either a direct action oc cAMP on glial cGMP metabolism or an indirect one on the protein activator of cGMP phosphodiesterase.  相似文献   

4.
Dibutyryl cyclic monophosphate (dBcAMP) has been shown to inhibit growth, and alter the morphology of astrocytes. However, the potential contribution of its hydrolytic product, butyrate, in inducing some of the changes that have been attributed to dBcAMP, is not clear. DNA, RNA, and purine synthesis were therefore studied in primary astrocyte cultures after 24 hours of exposure to varying concentrations of butyrate, dBcAMP, and agents that increase intracellular cAMP levels. Progression of cells through cell cycle was also studied by flow cytometry. Dibutyryl cAMP partially arrested cells in Go/G1 phase of cell cycle while sodium butyrate increased the percentage population of cells in G2/M phase. DNA synthesis and de novo purine synthesis were inhibited after treatment with dBcAMP, sodium butyrate, and various drugs that increase intracellular cAMP levels. RNA synthesis was increased with cAMP but was not affected by sodium butyrate. Our study shows that at millimolar concentrations, butyrate is capable of altering the cell cycle and inhibiting DNA synthesis in primary astrocyte cultures, in a manner that is similar although not identical to the effects of dBcAMP.  相似文献   

5.
The effects of cyclic nucleotides on elastin synthesis were studied in ligamentum nuchae fibroblasts by adding exogenous cyclic nucleotide derivatives or beta-adrenergic agents to cell culture medium. Elastin synthesis was enhanced (approximately 80%) by dibutyryl cGMP (Bt2cGMP) in concentrations ranging from 0.01 to 100 nM. Two other cGMP derivatives, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) and 2'-deoxy-cGMP, were also potent stimulators of elastin synthesis. In the absence of calcium, basal elastin production was substantially decreased (40% of control) and cGMP analogs no longer stimulated elastin synthesis, suggesting a role for calcium in the cGMP response. Bt2cAMP had no demonstrable effect on elastin production except at high concentrations which produced a nonspecific decrease equivalent to the decrease in total protein synthesis. Similarly, elevation of endogenous cellular cAMP levels by beta-adrenergic stimulation produced no change in elastin production. When 8-Br-cGMP was added to cells together with Bt2cAMP, cGMP-dependent stimulation of elastin production was abolished by cAMP in a dose-dependent fashion. These results suggest a coordinated means by which elastin production is controlled in ligament cells, i.e. increased cGMP levels lead to a stimulation of elastin production that is reversed by cAMP.  相似文献   

6.
7.
T cells can be activated to proliferate by antibodies to the T cell antigen receptor or the molecularly associated CD3 complex if monocytes are present. We have shown previously that monoclonal antibodies to the human T cell differentiation antigens CD5 (Tp67) and Tp44 each augment and prolong proliferative responses of anti-CD3-activated T cells, even in the absence of monocytes. Here we show that the functional and biochemical mechanisms of CD5 and Tp44 signal transmission are distinct. T cell proliferation is suppressed by agents that increase the concentration of intracellular cAMP. We found that antibody binding to the Tp44 surface molecule overcomes this suppression, whereas antibody binding to CD5 does not, indicating that ligand-Tp44 interaction changes T cell sensitivity to cAMP-mediated growth inhibition. The ability of anti-CD3, anti-Tp44, and anti-CD5 monoclonal antibodies to directly alter cyclic nucleotide levels in the Jurkat T cell line was examined. Anti-CD3 alone caused a rapid four- to sixfold increase in cAMP levels, but did not affect cGMP levels. However, anti-Tp44 and anti-CD5 each caused a rapid three- to fourfold increase in cGMP levels without affecting cAMP levels. In other experiments, cytoplasmic free calcium levels were measured in resting T cells after CD5 or Tp44 stimulation by using the dye indo-1 and flow cytometry. This sensitive method showed that anti-CD5 alone caused an increase in cytoplasmic calcium free levels within 3 min of antibody addition, whereas anti-Tp44 had no effect. Finally, anti-Tp44 and IL 1 each augmented proliferation of phorbol ester-stimulated lymphocytes, whereas anti-CD5 did not. The effects of IL 1 and Tp44 could be further distinguished in that the effect of anti-Tp44 was resistant to inhibition by dBcAMP whereas IL 1 was not. These data suggest that the receptor function of both Tp44 and CD5 involves changes in cyclic nucleotides levels, and that the mechanism by which anti-Tp44 and anti-CD5 antibodies affect T cell proliferative responses may be related to their selective effects on cGMP levels and cytoplasmic calcium concentrations.  相似文献   

8.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

9.
In the present work we studied the modulation of the effect of urea on the renal (Na+ + K+)ATPase by cAMP. We observed that urea inhibits the (NA+ + K+)ATPase activity in a dose-dependent manner, reaching 60% of inhibition at the concentration of 1M. This effect was completely reversed by dibutyryl-cAMP (dBcAMP) at 5 x 10(-4)M. The effect of dBcAMP was mimicked by 50 units of the catalytic subunit of protein kinase A and completely abolished by 5 x 10(-7)M H89, an inhibitor of protein kinase A. Addition of 1M urea decreases basal phosphorylation of the immunoprecipitated (NA+ + K+)ATPase in 50%, with this effect completely reversed by 5 x 10(-4)M dBcAMP. Furthermore, 5 x 10(-4)M dBcAMP by itself induced (NA+ + K+)ATPase phosphorylation. Taken together these data indicate that cAMP could be, in addition to the organic solutes already known, an important physiological modulator of the deleterious effect of urea on enzyme activity.  相似文献   

10.
天然甾体皂甙化合物的抗肿瘤活性   总被引:19,自引:0,他引:19  
采用MTT法,以长春新碱(VCR)为阳性对照,研究了6种从菝葜属植物中分离提取的天然甾体皂甙化合物对肝癌SMMC-7721、人宫颈癌HeLa和胃腺癌MGc80-3细胞生长的抑制作用.结果显示;6种甾体皂甙抗肿瘤活性与其化学结构密切相关,对三种癌细胞的抑瘤作用强度相同,抑癌活性的顺序为:薯蓣皂甙>VCR>SQD_4>SQD_3>M_1>SQD_1,甲基原薯蓣皂甙.甾体骨架的差异性是决定这类化合物抗肿瘤活性的主要因素.  相似文献   

11.
The present studies were performed in order to examine the possible role of cyclic GMP-stimulated phosphodiesterase (cGMP-PDE) activity in the inhibitory action of the inflammatory peptide bradykinin on cyclic AMP (cAMP) accumulation in D384 cells. Bradykinin decreased the forskolin-stimulated cAMP accumulation in the presence of the phosphodiesterase inhibitor rolipram, and caused a transient 50% rise in cellular cGMP in the presence of the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). Both basal and bradykinin-stimulated cGMP accumulation were about 8 times higher in the presence of IBMX than in the presence of rolipram. Sodium nitroprusside, which caused a 20-70-fold increase in cGMP levels reduced forskolin stimulated cAMP accumulation, whereas hydroxylamine, which maximally caused a 16-fold increase in cGMP, did not. 8-bromo-cGMP or dibutyryl cGMP had no effect on cAMP accumulation induced by forskolin. The inhibitory effect of nitroprusside was totally reversed by blocking the soluble guanylate cyclase activity by methylene blue treatment; however, the inhibitory action of bradykinin on cAMP accumulation was not changed by this treatment. Additionally, inhibition of nitric oxide synthesis, which is known to be regulated by Ca2+ and in turn stimulates cGMP production, by N omega-nitro-L-arginine (L-NAME) treatment did not alter the inhibitory effect of bradykinin on forskolin-induced cAMP accumulation. These results indicate that large increases in cGMP may regulate cAMP via cGMP-PDE whereas the small increase induced by bradykinin is insufficient and that cGMP is not involved in the inhibitory action of bradykinin on cAMP levels in D384 cells.  相似文献   

12.
Abstract. The effect of a cAMP derivative (N6, 02-dibutyryl cyclic adenosine 3'3'-monophosphate: dBcAMP) on the cell cycle and on the synthesis of typical extracellular matrix (ECM) components, i.e. collagen and glycosaminoglycans (GAG), was studied in two hormone-responsive human breast cancer cell lines VHB-1 and MCF-7. The data showed that dBcAMP induced a decrease in the proportion of cells in S + G2+ M phases due to an increase of the non-cycling (Go phase) cell number as revealed by the Ki-67 antigen immunocytochemical study. The collagen synthesis, estimated by [3H] proline incorporation into the cellular proteins followed by an enzymatic digestion with highly purified bacterial collagenase, was not modified by dBcAMP. In contrast, the GAG synthesis, analysed by [3H] glucosamine incorporation, was increased two-fold in the dBcAMP treated cells. As a comparison we also tested 4-hydroxy-Tamoxifen (4-OH-Tam) since it induces similar cell cycle perturbations as dBcAMP. However, we did not observe a stimulation of the GAG synthesis following 4-OH-Tam treatment. These data demonstrated that the increased GAG synthesis is due to cAMP and is not a consequence of perturbations in the cell cycle. We can therefore assume that the ECM modifications induced by dBcAMP may contribute to the growth inhibition of the hormone-responsive human breast cancer cells.  相似文献   

13.
The intracellular level of cGMP was independent of the rate of cell division in cells derived from virally infected brain tissue. The phosphodiesterase inhibitor R07-2956 (4-dimethoxybenzyl-2-imidazolidinone) increased the intracellular level of cGMP in virally infected brain cells, but it did not effect the level of cAMP. There was no correction between the increase in cGMP levels following addition of R07-2956 and changes in mitotic activity in the brain cell cultures. Experimental manipulations which increased the cAMP level were accompanied by a decreased mitotic rate indicating there was a correlation between mitotic activity and the level of cAMP in the same cells. Raising the intracellular level of cAMP by exogenous db-cAMP or cAMP or the use of other phosphodiesterase inhibitors routinely increased the level of cGMP as well. Conversely increasing the intracellular cGMP level by adding the exogenous cGMP increased the level of both cGMP and cAMP.A tissue culture system was used with the cell line derived from viral infected human brain tissue originally obtained from a patient with subacute sclerosing panencephalitis (SSPE). The intracellular levels of cAMP and cGMP were monitored by radioimmunoassay following manipulation of the system by addition of exogenous cGMP (0.05 mM), addition of exogenous db-cAMP (0.5 mM), or cAMP (0.5 mM) and the use of phosphodiesterase inhibitors: theophylline (1.0 mM), papaverine (50 μg/ml), 4-3-butoxy-4-methoxy benzyl-2-imidozalidinone (R020-1724) and R07-2956. Cell division was monitored in treated and non-treated cultures at 24 h intervals by analyzing the cell number and mitotic index.High levels of cGMP were found in cells which were not actively dividing but high levels were just as apt to be present in dividing cells. There was an inverse relationship between cell division and the level of cAMP.  相似文献   

14.
The experiments on rats have proved that ulcerative lesions in the gastric mucosa influenced by intraperitoneal catecholamines (noradrenaline and adrenaline) develop on the background of pronounced decrease of cAMP level in the gastric mucosa during ulceration and relatively slight fluctuations of cGMP level. As a result, cAMP/cGMP ratio in mucosa was significantly decreased during ulceration. These changes in cAMP level and cAMP/cGMP ratio may play an important role in destabilization of lysosomal membranes followed by a chain of pathological reactions resulting in ulcerative lesions of the gastric mucosa.  相似文献   

15.
环六亚甲基双乙酰胺(HMBA)对MGc80-3不同时相细胞内cAMP-PKA与DAG-PKC两大系统不仅具有正负调控作用,而且其作用具有周期特异性. 其中G1期是最敏感的调控时相,与对照组相比,cAMP水平上升102.3%,PKA活性升高348%,DAG含量下降51.4%,PKC活性降低32.3%;次敏感时相为G2期;M期基本没受影响;S期变化规律不同于其他时相.  相似文献   

16.
Extracellular cAMP induces chemotaxis and cell aggregation in dictyostelium discoideum cells. cAMP added to a cell suspension is rapidly hydrolyzed (half-life of 10 s) and induces a rapid increase of intracellular cGMP levels, which reach a peak at 10 s and recover prestimulated levels at about 30 s. This recovery is not due to removal of the stimulus because the nonhydrolyzable analogue adenosine 3’,5’-monophosphorothioate-Sp- stereoisomer (cAMPS) induced a comparable cGMP response, which peaked at 10 s, even at subsaturating cAMPS concentrations. When cells were stimulated twice with the same cAMP concentration at a 30-s interval, only the first stimulus produced a cGMP response. Cells did respond to the second stimulus when the concentration of the second stimulus was higher than that of the first stimulus. By increasing the interval between two identical stimuli, the response to the second stimulus gradually increased. Recovery from the first stimulus showed first-order kinetics with a half-life of 1-2 min. The stimulation period was shortened by adding phosphodieterase to the cell suspension. The cGMP response was unaltered if the half-life of cAMP was reduced to 2 S. The peak of the transient cGMP accumulation still appeared at 10 s even when the half- life of cAMP was 0.4 s; however, the height of the cGMP peak was reduced. The cGMP response at 10 s after stimulation was diminished by 50 percent when the half-life of 10(-7) M cAMP was 0.5 s or when the half-life of 10(-8) M cAMP was 3.0 s. These results show that the cAMP signal is transduced to two opposing processes: excitation and adaptation. Within 10 s after addition of cAMP to a cell suspension the level of adaptation reaches the level of excitation, which causes the extinction of the transduction of the signal. Deadaptation starts as soon as the signal is removed, and it has first-order kinetics with a half-life of 1-2 min.  相似文献   

17.
维生素A酸和双丁酰基环腺苷单磷酸对小鼠胚...   总被引:14,自引:0,他引:14  
In vitro induced differentiation of mouse embryonic stem cells (ES-5 cells), derived from 5-day 129 mouse blastocyst was studied with retinoic acid (RA) and dibutyryl cyclic adenosine monophosphate (dB-cAMP). RA only or RA with dBcAMP together can both induce monolayer ES-5 cells to differentiate into cells of two types: neuron-like cells and fibroblast-like cells. After treated with 10(-6)mol/L RA for 6 days, the differentiated cells were about 80% of all cells, among which most cells were fibroblast-like cells and others were neuron-like cells. While after 6 days of treatment with 10(-6)mol/L RA and 1 mmol/L dBcAMP, the ratio of differentiated cells can be up to 90-95%, and most cells (about 90-95% of differentiated cells) are neuron-like cells. Immunocytochemical analysis of phenotypic markers, especially GFAP and laminin, showed that the neuron-like cells were glia cells. DBcAMP affected the direction and efficiency of induction by RA. The induced differentiation by RA on attached aggregated ES-5 cells was studied as well. In this case, more cell types appeared, such as epitheloid cells, fibroblast-like cells and spindle shaped cells and so on. The exact nature of these differentiated cells was not identified. After attached culture for about 15 days, rhythmically contracting cardiac-like muscle cells were most attractive among those several differentiated cell types. The change of phenotypic markers during induced differentiation of ES-5 cells in monolayer and aggregated state was summarized in table 1. Transforming growth factor-beta 1 (TGF-beta 1) was also examined in undifferentiated and differentiated cells. Untreated ES-5 cells showed positive immunofluorescent reaction to TGF-beta 1 and various differentiated cells showed different reactions. Glia cells and cardiac-like cells displayed a much stronger TGF-beta 1 reaction. These results indicate that the exact role played by TGF-beta 1 during induced differentiation needs further investigation. The different effect of RA on monolayer and aggregated ES cells and the possible significance of cell to cell interaction in the latter case are discussed.  相似文献   

18.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

19.
Cyclic AMP (cAMP) and cyclic GMP (cGMP) suppress apoptosis in many cell types, including hepatocytes. We have previously shown that membrane-permeable cAMP and cGMP analogs attenuate tumor necrosis factor α plus actinomycin D (TNFα/ActD)-induced apoptosis in hepatocytes at a step upstream of caspase activation and cytochrome c release. Recently we have also shown that FADD levels increase 10 folds in response to TNFα/ActD. Therefore we hypothesized that cAMP and cGMP would inhibit FADD upregulation. We show here that cyclic nucleotide analogs dibutyryl cAMP (db-cAMP) and 8-bromo-cGMP (Br-cGMP) inhibit cell death and the cleavages of multiple caspases including caspase-10, -9, -8, -3, and -2, as well as suppress FADD protein up-regulation in TNFα/ActD-induced apoptosis. The inhibitory effects of cAMP were seen at lower concentrations than cGMP. Both cAMP and cGMP prevented FADD overexpression and cell death in hepatocytes transfected with the FADD gene. A protein kinase A (PKA) inhibitor, KT 5720, reversed the inhibition of FADD protein levels induced by cAMP or cGMP. In conclusion, our findings indicate that cAMP and cGMP prevent TNFα/ActD-induced apoptosis in hepatocytes and that this occurs in association with a near complete inhibition of the upregulation of FADD via a PKA-dependent mechanism. Supported by the National Institutes of Health Grant GM-44100 (to T.R.B).  相似文献   

20.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号