首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

2.
3.
We have mapped the mouse protein tyrosine phosphatase ? (PTP?, gene symbolPtpre) gene to the distal region of chromosome 7 by linkage analysis using two sets of multilocus genetic crosses. The humanPTP? gene (gene symbolPTPRE) was mapped to chromosome 10q26 by fluorescencein situhybridization. We have previously documented the existence of two isoforms ofPTP?—a transmembranal, receptor-type isoform and a shorter, cytoplasmic one. Both isoforms have been suggested to arise from a single gene through the use of alternative promoters and 5′ exons. The identification of a singlePTP? locus in both organisms is consistent with this suggestion.  相似文献   

4.
5.
Integration of Gene Maps: Chromosome X   总被引:3,自引:0,他引:3  
Omitting 1137 loci that are included in the location database but have only cytogenetic assignment, there are 605 loci in the integrated map that synthesizes physical and genetic data and subsumes a composite physical location, cytogenetic and regional assignments, mouse homology, rank, and references. With error filtration and allowance far interference the genetic length is 211 cM, to which the p arm contributes 100 cM. The physical length is 164 Mb, with 62 Mb in the p arm. Current problems in map integration are discussed and some solutions proposed.  相似文献   

6.
7.
The intrachromosomal localization of three X-linked gene loci (PGK, HGPRT and G6PD) has been determined using a somatic cell genetic approach. A human cell line possessing an X/14 translocation was used as one parent in the formation of human/mouse hybrids. The translocation separates the human X into two parts: Xp and t(Xq14q). The data indicate that all three X-linked loci segregate with the t(Xq14q) rearrangement product thus permitting their assignment to the X chromosome's long arm. Secondary rearrangements and data from other laboratories suggest that the order of the the three markers from the centromere to the distal end of the X long arm is PGK, HGPRT, G6PD. It was also observed that NP, an autosomal locus, segregated with the t(Xq14q) chromosome. This provides strong support for the assignment of NP to 14.  相似文献   

8.
cDNA clones encoding the human N-cadherin cell adhesion molecule have been isolated from an embryonic muscle library by screening with an oligonucleotide probe complementary to the chick brain sequence and chick brain cDNA probe lambda N2. Comparison of the predicted protein sequences revealed greater than 91% homology between chick brain, mouse brain, and human muscle N-cadherin cDNAs over the 748 amino acids of the mature, processed protein. A single polyadenylation site in the chick clone was also present and duplicated in the human muscle sequence. Immediately 3' of the recognition site in chick a poly(A) tail ensued; however, in human an additional 800 bp of 3' untranslated sequence followed. Northern analysis identified a number of major N-cadherin mRNAs. These were of 5.2, 4.3, and 4.0 kb in C6 glioma, 4.3 and 4.0 kb in human foetal muscle cultures, and 4.3 kb in human embryonic brain and mouse brain with minor bands of 5.2 kb in human muscle and embryonic brain. Southern analysis of a panel of somatic cell hybrids allowed the human N-cadherin gene to be mapped to chromosome 18. This is distinct from the E-cadherin locus on chromosome 16. Therefore, it is likely that the cadherins have evolved from a common precursor gene that has undergone duplication and migration to other chromosomal locations.  相似文献   

9.
X染色体发生X染色体失活 ,但是Xp基因有 30 %表现为逃逸 ,而Xq仅不到 3%。为了研究X染色体基因失活和表达逃逸发生和维持的分子机制 ,比较了Xq和XpDNA序列的RNA模拟结合强度。X染色体的核苷酸序列被分为 5 0kb一段 ,对每一段DNA做 7碱基 (7nt)字符串组合分析 (共有 4 7=16 384种组合 ) ,记录每段 5 0kbDNA中每种 7nt字符串的频率。选择生发中心B细胞中的 12 0个高表达基因 ,计算这些基因的内含子 7nt字符串的出现频率 ,称为intron 7nt,以此作为RNAs(RNA群 ,模拟细胞中RNA在小片段的总和 )。已知一段DNA序列的 7nt频率值和intron 7nt,即可以计算该DNA段与intron 7nt的结合强度。每段 5 0kbDNA与intron 7nt的结合强度取决于该DNA段与intron 7nt互补核苷酸的频率 ,互补的核苷酸序列越多 ,结合强度就越大。DNA段与intron 7nt的模拟结合强度称为RNA结合强度 ,试图模拟该段DNA可以结合的RNA小片段的总量。之所以采用 7nt字符串组合分析是考虑到连续 7个核苷酸互补则可以形成相对稳定的结合。研究发现 :1)Xp各DNA段的RNA结合强度均值显著大于Xq (P <0 0 0 1) ;2 )Xp上高结合RNA的DNA段数目显著高于Xq (P <0 0 0 1) ;3)RNA高结合DNA段形成的簇与X染色体基因表达逃逸区关联。有证据表明 ,RNA可以通过改变染色质  相似文献   

10.
11.
Jin F  Dai J  Ji C  Gu S  Wu M  Qian J  Xie Y  Mao Y 《Biochemical genetics》2004,42(11-12):419-427
Members of the large family of WD-repeat proteins are involved in diverse functions such as RNA-procession, signal transduction, vesicular trafficking, cytoskeletal assembly, and cell cycle control. By large-scale-sequencing analysis of a human fetal brain cDNA library, we isolated a novel human cDNA encoding a 7-WD40-repeat protein. This cDNA is 2004 bp in length and it codes for a 544-amino-acid protein. We term it human WD40-repeat-containing gene 25 (WDR25) and this gene shows significant similarity with human pre-mRNA splicing factor 17. The WDR25 gene is mapped to chromosome 14q32 and contains seven exons. RT-PCR analysis shows that the WDR25 gene is widely expressed in human tissues and the expression levers in heart, muscle, testis, ovary, uterus, and prostate are relatively high.  相似文献   

12.
Glutaredoxin is a small protein (12 kDa) catalyzing glutathione-dependent disulfide oxidoreduction reactions in a coupled system with NADPH, GSH, and glutathione reductase. A cDNA encoding the human glutaredoxin gene (HGMW-approved symbol GLRX) has recently been isolated and cloned from a human fetal spleen cDNA library. The screening of a human genomic library in Charon 4A led to the identification of three genomic clones. Using fluorescencein situhybridization to metaphase chromosomes with one genomic clone as a probe, the human glutaredoxin gene was localized to chromosomal region 5q14. This localization at chromosome 5 was in agreement with the somatic cell hybrid analysis, using DNA from a human–hamster and a human–mouse hybrid panel and using a human glutaredoxin cDNA as a probe.  相似文献   

13.
The human and mouse genes for the neuropeptide Y4receptor have been isolated, sequenced, and shown to contain no introns within the coding region of the gene. Nonisotopicin situhybridization and interspecific mouse backcross mapping have localized the genes to human chromosome 10q11.2 and mouse chromosome 14. Five nucleotide variants, which do not alter the protein sequence, have been identified within the coding region of the human receptor gene. The human Y4subtype is most closely related to the Y1-receptor subtype (42%), suggesting that it evolved from an ancestral Y1-like receptor via an RNA-mediated transpositional event.  相似文献   

14.
Genome imprinting is the process by which identical alleles at a particular locus may be rendered functionally different depending on the sex of the parent contributing the allele. While several mutations in imprinted genes have been defined, no variants in the regulatory system that gives rise to imprinting have been described. Here we report our genetic analysis of the behavior of the interstrain, polar, embryonic-lethal phenotype known as the "DDK syndrome." We have mapped the interstrain, polar-lethal region of the genome to the distal portion of mouse chromosome 11, near the Xmv-42 locus. We propose that the lethal phenotype is not caused by a standard mutation, but by aberrant imprinting of a gene within this region.  相似文献   

15.
Thiamine-responsive megaloblastic anemia, also known as "TRMA" or "Rogers syndrome," is an early-onset autosomal recessive disorder defined by the occurrence of megaloblastic anemia, diabetes mellitus, and sensorineural deafness, responding in varying degrees to thiamine treatment. On the basis of a linkage analysis of affected families of Alaskan and of Italian origin, we found, using homozygosity mapping, that the TRMA-syndrome gene maps to a region on chromosome 1q23.2-23.3 (maximum LOD score of 3.7 for D1S1679). By use of additional consanguineous kindreds of Israeli-Arab origin, the putative disease-gene interval also has been confirmed and narrowed, suggesting genetic homogeneity. Linkage analysis generated the highest combined LOD-score value, 8.1 at a recombination fraction of 0, with marker D1S2799. Haplotype analysis and recombination events narrowed the TRMA locus to a 16-cM region between markers D1S194 and D1S2786. Several heterozygote parents had diabetes mellitus, deafness, or megaloblastic anemia, which raised the possibility that mutations at this locus predispose carriers in general to these manifestations. Characterization of the metabolic defect of TRMA may shed light on the role of thiamine deficiency in such common diseases.  相似文献   

16.
The micro-exon genes (MEG) of Schistosoma mansoni, a parasite responsible for the second most widely spread tropical disease, code for small secreted proteins with sequences unique to the Schistosoma genera. Bioinformatics analyses suggest the soluble domain of the MEG-14 protein will be largely disordered, and using synchrotron radiation circular dichroism spectroscopy, its secondary structure was shown to be essentially completely unfolded in aqueous solution. It does, however, show a strong propensity to fold into more ordered structures under a wide range of conditions. Partial folding was produced by increasing temperature (in a reversible process), contrary to the behavior of most soluble proteins. Furthermore, significant folding was observed in the presence of negatively charged lipids and detergents, but not in zwitterionic or neutral lipids or detergents. Absorption onto a surface followed by dehydration stimulated it to fold into a helical structure, as it did when the aqueous solution was replaced by nonaqueous solvents. Hydration of the dehydrated folded protein was accompanied by complete unfolding. These results support the identification of MEG-14 as a classic intrinsically disordered protein, and open the possibility of its interaction/folding with different partners and factors being related to multifunctional roles and states within the host.  相似文献   

17.
18.
We have recently identified a novel RING finger protein expressed in the rat brain, which associates with myosin V and α-actinin-4. Here we have cloned and characterized the orthologous human BERP cDNA and gene (HGMW-approved symbol RNF22). The human BERP protein is encoded by 11 exons ranging in size from 71 to 733 bp, and fluorescence in situ hybridization shows that the BERP gene maps to chromosome 11p15.5, 3′ to the FE65 gene. The human BERP protein is 98% identical to the rat and mouse proteins, and we have identified a highly conserved potential orthologue in Caenorhabditis elegans. BERP belongs to the RING finger–B-box–coiled coil (RBCC) subgroup of RING finger proteins, and a cluster of these RBCC protein genes is present in chromosome 11p15. Chromosome region 11p15 is thought to harbor tumor suppressor genes, and deletions of this region occur frequently in several types of human cancers. These observations indicate that BERP may be a novel tumor suppressor gene.  相似文献   

19.
20.
Glycogenin is the autocatalytic, self-glucosylating primer for glycogen synthesis, providing the anchor on which the macromolecule is constructed. We have sequenced the cDNA coding for human muscle glycogenin and have deduced the corresponding amino acid sequence. By means of the polymerase chain reaction and fluorescencein situhybridization, we have found the chromosomal location of the gene coding for glycogenin. This is localized to human chromosome 3, band q24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号