首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
 The development of isolated, defined wheat microspores undergoing in vitro embryogenesis has been followed by cell tracking. Isolated wheat (Triticum aestivum L.). microspores were immobilized in Sea Plaque agarose supported by a polypropylene mesh at a low cell density and cultured in a hormone-free, maltose-containing medium in the presence of ovaries serving as a conditioning factor. Embryogenesis was followed in microspores isolated from immature anthers of freshly cut tillers or from heat- and starvation-treated, excised anthers. Three types of microspore were identified on the basis of their cytological features at the start of culture. Type-1 microspores had a big central vacuole and a nucleus close to the microspore wall, usually opposite to the germ pore. This type was identical to the late microspore stage in anthers developing in vivo. Microspores with a fragmented vacuole and a peripheral cytoplasmic pocket containing the nucleus were defined as type 2. In type-3 microspores the nucleus was positioned in a cytoplasmic pocket in the centre of the microspore. Tracking revealed that, irrespective of origin, type-1 microspores first developed into type 2 and then into type-3 microspores. After a few more days, type-3 microspores absorbed their vacuoles and differentiated into cytoplasm-rich and starch-accumulating cells, which then divided to form multicellular structures. Apparently the three types of microspore represent stages in a continuous process and not, as previously assumed, distinct classes of responding and non-responding microspores. The first cell division of the embryogenic microspores was always symmetric. Cell tracking also revealed that the original microspore wall opened opposite to a region in the multicellular microspore which consisted of cells containing starch grains while the remaining cells were starch grain-free. The starch-containing cells were located close to the germ pore of the microspore. In more advanced embryos the broken microspore wall was detected at the root pole of the embryo. Received: 27 December 1999 / Accepted: 11 May 2000  相似文献   

2.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

3.
Summary This paper describes the unequal distribution of plastids in the developing microspores of Impatiens walleriana and Impatiens glandulifera which leads to the exclusion of plastids from the generative cell. During the development from young microspore to the onset of mitosis a change in the organization of the cytoplasm and distribution of organelles is gradually established. This includes the formation of vacuoles at the poles of the elongate-shaped microspores, the movement of the nucleus to a position near the microspore wall in the central part of the cell, and the accumulation of the plastids to a position near the wall at the opposite side of the cell. In Impatiens walleriana, the accumulated plastids are separated from each other by ER cisterns, and some mitochondria are also accumulated. In both Impatiens species, the portion of the microspore in which the generative cell will be formed is completely devoid of plastids at the time mitosis starts.  相似文献   

4.
M. -B. Schröder 《Protoplasma》1985,124(1-2):123-129
Summary This paper describes the development of pollen grains ofGasteria verrucosa from the late microspore to the mature two-cellular pollen grain. Ultrastructural changes and the distribution of plastids as a result of the first pollen mitosis have been investigated using light and electron microscopy. The microspores as well as the generative and the vegetative cell contain mitochondria and other cytoplasmic organelles during all of the observed developmental stages. In contrast, the generative cell and the vegetative cell show a different plastid content. Plastids are randomly distributed within the microspores before pollen mitosis. During the prophase of the first pollen mitosis the plastids become clustered at the proximal pole of the microspore. The dividing nucleus of the microspore is located at the distal pole of the microspore. Therefore, the plastids are not equally distributed into both the generative and the vegetative cell. The possible reasons for the polarization of plastids within the microspore are briefly discussed. The lack of plastids in the generative cell causes a maternal inheritance of plastids inGasteria verrucosa.  相似文献   

5.
Calcium distribution in fertile and sterile anthers of a thermosensitive male-sterile wheat genotype was investigated using an antimonate precipitation method. During fertile anther development, before meiosis of the microspore mother cells, calcium precipitates were apparent in tapetal cells of the anther wall. After meiosis, precipitates were detected in the early microspores and accumulated in the large vacuole of late microspores. After microspore division, following decomposition of the large vacuole, precipitates decreased in the bicellular pollen. The earliest abnormality in calcium precipitate distribution detected during sterile pollen development was the greater accumulation of precipitates in the cytoplasm and nucleus of late microspores. The sterile microspore can divide to form bicellular pollen, but the large vacuole of sterile bicellular pollen did not decompose and greater abundance of precipitates was retained in the large vacuole. Abnormal distribution of calcium precipitates in sterile pollen precedes structural changes, suggesting that abnormal calcium metabolism is associated with pollen abortion.  相似文献   

6.
The ultrastructural changes of young pollen protoplasts under culture condition in Hemerocallis fulva were studied. In comparison with the original pollen grains, the pollen protoplasts had been completely deprived of pollen wall, but kept the internal structure intact, including a large vacuole, a thin layer of cytoplasm and a peripherally located nucleus. After 8 days of culture a few pollen protoplasts were triggered to cell division: some of them were just undergoing mitosis with clearly visible chromosomes and spindle fibers; the others already divided into 2-celled units. The two daughter cells were equal or unequal in size but with similar distribution of organelles inside. Besides cell division, there were also free nuclear division, amitosis and formation of micronuclei indicating a diversity of division modes in pollen protoplast culture, A series of changes occurred during the process of induction of cell division, such as locomotion of the nucleus toward the central position, disappearence of the large vacuole, increase of electron density of cytoplasm, increase and activation of organelles, diminishing of starch granules in plastids, etc. However, the regeneration of surface wall was not sufficient it contained mostly vesicles with only a few microfibrits. The wall separating the two daughter cells were either complete or incomplete. The weak capability of wall formation is supposed to be one of the major obstacles which has so far restricted sustained cell divisions of young pollen protoplasts under current culture condition.  相似文献   

7.
莴苣花药发育过程中钙的分布特征   总被引:4,自引:0,他引:4  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加。同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少。伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后。小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡。体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大液泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

8.
萱草幼嫩花粉原生质体培养启动细胞分裂的超微结构研究   总被引:2,自引:0,他引:2  
萱草(Hemerocallis fulva L.)幼嫩花粉,即后期小孢子原生质体在培养8天时进入有丝分裂或已形成二个细胞。此外,还观察到游离核分裂、无丝分裂、微核形成等现象。这显示了花粉原生质体分裂方式的多样性。在启动分裂时发生一系列变化:如细胞核移位、大液泡消失、细胞质电子密度增加、细胞器增多、质体不含淀粉等。再生的细胞壁含许多小泡,很少纤丝,表现出现有培养条件下壁的形成能力薄弱。这是今后改进培养技术需要特别注意的问题。  相似文献   

9.
在枸杞花药发育过程中,用焦锑酸钾沉淀的钙颗粒显示出了一个与花药发育事件有关的分布特征:在孢原细胞时期的花药中钙颗粒很少。在造孢细胞到小孢子母细胞时期,花药中钙颗粒增加。当花粉母细胞进行减数分裂时,花药中的钙颗粒进一步增加,尤其是在小孢子母细胞的胼胝质壁中。在小孢子发育早期,花药药隔部位的绒毡层细胞质中钙颗粒也明显增加并特异性地分布在其内切向壁上。当小孢子被释放出后,钙颗粒开始特异性积累在正在形成的花粉外壁中,尤其在萌发孔的部位聚集了大量的钙颗粒。当小孢子形成大液泡时,其细胞质中的钙颗粒明显减少。在小孢子分裂形成二胞花粉后,在二胞花粉的大液泡中又特异性地出现许多细小钙颗粒。随着二胞花粉的大液泡完全消失,其细胞质中又出现了许多钙颗粒。接近开花时的成熟花粉粒细胞质中,细小的钙颗粒主要分布在营养细胞和生殖细胞中。枸杞花药发育过程中钙的分布特征反映了其参与调控花粉发育过程。  相似文献   

10.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

11.
莴苣花药发育过程中钙的分布特征   总被引:1,自引:0,他引:1  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加, 同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少,伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后,小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡,体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大波泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

12.
Identification of potentially embryogenic microspores in Brassica napus   总被引:1,自引:0,他引:1  
Studies were undertaken with Brassica napus L. cv. Topas to identify buds containing microspores predisposed to embryogenesis in vitro and to investigate bud and microspore development in relation to this process. No significant correlation was found between the final embryo number and bud components. There appears to be a developmental window of less than 8 h duration during which microspores are very likely to form embryos: over 70% of the microspores can undergo division and up to 70% of these can form embryos. Embryos were mainly obtained from late uninuucleate to early binucleate microspores: the former contained mainly a G2 or M phase nucleus located at the microspore periphery and the latter a generative nucleus (associated with the intine) and a vegetative nucleus. Observations indicated that only the vegetative nucleus contributed to embryo formation. The first embryogenic division occurred between 8 and 16 h for uninucleate- and between 8 and 48 h for binucleate-derived embryos.  相似文献   

13.
白刺胚乳早期发育的超微结构研究   总被引:2,自引:0,他引:2  
白刺(Nitraria sibirica)胚乳发育经历游离核阶段、细胞化阶段和被吸收解体阶段。游离核胚乳沿胚囊壁均匀排列为一层,胞质浓厚,其中有丰富的质体、线粒体、高尔基体、内质网和各种小泡等细胞器。珠孔区域的胚囊壁具发达的分枝状壁内突,而周缘区域的胚囊壁具间隔的钉状内突,内突周围的细胞质中具多数线粒体和小泡。胚乳细胞化时,初始垂周壁源于核有丝分裂产生的细胞板。在细胞板两端开始壁的游离生长,一端与胚囊壁相连接,另一端向心自由延伸。壁的游离生长依赖于小泡的融合。早期胚乳细胞具大液泡,具核或无核,细胞质中有大量的线粒体,质体缺乏,其壁仍由多层膜结构组成。  相似文献   

14.
利用活体压片、半薄及超薄切片技术,对栽培稻(Oryza sativa L.)花粉不育杂种F1及育性正常的亲本台中65离体培养前后的小孢子及花药壁进行细胞学研究.结果表明:与台中65相比,杂种F1的花粉小孢子在发育至单核中-晚期,出现比例较高的胞质凝聚小孢子和少量星型小孢子,正常小孢子和淀粉化小孢子比例降低.在离体条件下,胞质凝聚小孢子、星型小孢子、正常小孢子、液泡化小孢子、淀粉化小孢子的发育主要沿着胞质凝聚败育过程、孢子体发育过程、配子体发育过程、液泡化过程和淀粉化过程进行;药壁组织在离体条件下,杂种F1比台中65的绒毡层降解速度快,中层膨大程度高.杂种F1与台中65在离体培养下小孢子发育及药壁细胞学的差异主要是受到S-a座位内等位基因互作及离体培养环境的影响.  相似文献   

15.
芡实绒毡层细胞发育的超微结构变化   总被引:1,自引:0,他引:1  
芡实( Euryaleferox Salisb) 绒毡层细胞在小孢子母细胞时期, 质体出现明显的变形期,细胞中二核常相互贴近或呈嵌合状态, 细胞壁间层中胞间连丝发达。减数分裂期, 绒毡层细胞壁融解消失, 胞间连丝断离, 细胞间发育出现不同步现象。质体开始积累淀粉, 部分质体呈空泡状, 并出现质体膜内陷, 这与液泡具相似的功能。四分体时期, 绒毡层细胞内部结构开始解体。单核小孢子时期, 绒毡层细胞解体消失, 使小孢子后期发育的营养来源受到影响,作者认为这是生产上成熟花粉囊中花粉粒少而且发育不正常的主要原因之一。  相似文献   

16.
葡萄果实发育过程中果肉细胞超微结构的观察   总被引:20,自引:0,他引:20  
用透射电镜观察了“巨峰”葡萄(Vitis vinifera×V.labrusca)果实3个发育时期中果肉细胞超微结构的变化。果实第一次快速生长期的果肉细胞超微结构表现出物质和能量代谢旺盛的特点。缓慢生长期的果实虽外部形态平静少变,但果肉细胞超微结构表现出深刻的变化:细胞核形状特化为裂瓣状是最显著的特点;线粒体数目丰富;粗面内质网槽库膨大形成的囊泡富集,出现向液泡汇融和向质膜靠近的现象;质膜内陷;液泡膜完整。另外,原生质也出现一些降解的现象。但总体结构特点表明果肉细胞在此期处于十分活跃的物质周转代谢和信息交换过程中。果实第二次快速生长期果肉细胞超微结构表现出衰老降解的特点,但线粒体结构依然完整,数量仍然丰富,原生质膜也保持了很好的完整性,这似乎与维持第二次快速生长或成熟有关。  相似文献   

17.
A stress treatment of 32 degrees C for at least 8h was able to change the gametophytic program of the microspore, switching it to embryogenesis in Brassica napus, an interesting model for studying this process in vitro. After induction, some microspores started symmetric divisions and became haploid embryos after a few days, whereas other microspores, not sensitive to induction, followed their original gametophytic development. In this work the distribution and ultrastructural localization of two heat-shock proteins (Hsp70 and Hsp90) throughout key stages before and after embryogenesis induction were studied. Both Hsp proteins are rapidly induced, localizing in the nucleus and the cytoplasm. Immunogold labeling showed changes in the distribution patterns of these proteins, these changes being assessed by a quantitative analysis. Inside the nucleus, Hsp70 was found in association with RNP structures in the interchromatin region and in the nucleolus, whereas nuclear Hsp90 was mostly found in the interchromatin region. For Hsp70, the accumulation after the inductive treatment was accompanied by a reversible translocation from the cytoplasm to the nucleus, in both induced (embryogenic) and noninduced (gametophytic) microspores. However, the translocation was higher in embryogenic microspores, suggesting a possible additional role for Hsp70 in the switch to embryogenesis. In contrast, Hsp90 increase was similar in all microspores, occurring faster than for Hsp70 and suggesting a more specific role for Hsp90 in the stress response. Hsp70 and Hsp90 colocalized in clusters in the cytoplasm and the nucleus, but not in the nucleolus. Results indicated that stress proteins are involved in the process of microspore embryogenesis induction. The differential appearance and distribution of the two proteins and their association at specific stages have been determined between the two systems coexisting in the same culture: embryogenic development (induced cells) and development of gametes (noninduced cells).  相似文献   

18.
Summary Brassica napus cv. Topas microspores, isolated and cultured near the time of the first pollen mitosis and subjected to a heat treatment of 24 h, can be induced to develop into haploid embryos. This is a study of microspore structure during induction and embryo determination. Early during the 32.5 °C incubation period the nucleus moved away from the edge of the cell, and granules, 30 to 60 nm in diameter, appeared in the mitochondria and as a cluster in the cytoplasm. Cells divided symmetrically and at the end of the heat treatment, acquired the features of induced bicellular structures described previously. The features persisted as the cells divided randomly within the exine for 4–7 days following heat induction. Multicellular structures released from the exine underwent periclinal divisions resulting in protoderm differentiation of the globular embryo, thus determining embryo development. The cytoplasm of early heart-stage embryos contains abundant polyribosomes. Non-embryogenic development was indicated by large accumulations of starch and/or lipid and thickened cell walls or an unorganized pattern of cell division following release of the multicellular structures from the exine. Embryogenesis is discussed in terms of induction, embryo determination and development.  相似文献   

19.
辣椒花药培养胚状体发生的组织学和细胞学研究   总被引:1,自引:0,他引:1  
采用荧光显微镜、扫描电镜和透射电镜技术.系统研究了辣椒花药培养胚状体发生的组织学和细胞学变化特征。辣椒单个花药中花粉发育具有强烈的不同步性。随着培养时期的变化.不同时期花粉的百分率也发生变化。处于单核靠边期的小孢子培养以后按两种发育途径之一进行发育。在多数情况下,孢子体不对称分裂,产生典型双核花粉。胚性花粉粒是由营养核的重复分裂形成的。当小孢子从四分体中释放出来.特殊类型的外壁已经形成。在随后的花粉发育过程中.小孢子体积增大,外壁继续加厚。培养24h后,小孢子体积增大。胚性发生的小孢子表现出两种不同的形态变化。当胚状体发育到心形胚时.胚状体的表皮细胞排列规则。用光学和电子显微镜分析了小孢子胚状体形态形成过程.及胚状体诱导后细胞组织发生的一系列结构变化的时序性特征,这些变化主要影响质体、液泡室、细胞壁和细胞核,进一步分化的程序模拟合子胚的发育。  相似文献   

20.
Summary In tis androgenic response, maize is considered to be a recalcitrant plant. We used mechanically isolated microspores of maize genotype A18 to establish a responsive microspore culture of maize. Morphological events occurring during the first days of maize androgenesis in a microspore culture were observed and described, and some morphological markers for distinguishing between embryogenic microspores and nonembryogenic microspores were identified. It was found that the enlargement of microspores during the first days in culture and the ‘star-like’ organization of the cytoplasm inside the microspore are connected with reprogramming of the developmental pathway in maize microspores. Some differences were also found in the surface wall architecture of embryogenic microspores. Fertile plants were successfully recovered from microspore-originated structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号