首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nidetzky B  Klimacek M  Mayr P 《Biochemistry》2001,40(34):10371-10381
Microbial xylose reductase, a representative aldo-keto reductase of primary sugar metabolism, catalyzes the NAD(P)H-dependent reduction of D-xylose with a turnover number approximately 100 times that of human aldose reductase for the same reaction. To determine the mechanistic basis for that physiologically relevant difference and pinpoint features that are unique to the microbial enzyme among other aldo/keto reductases, we carried out stopped-flow studies with wild-type xylose reductase from the yeast Candida tenuis. Analysis of transient kinetic data for binding of NAD(+) and NADH, and reduction of D-xylose and oxidation of xylitol at pH 7.0 and 25 degrees C provided estimates of rate constants for the following mechanism: E + NADH right arrow over left arrow E.NADH right arrow over left arrow E.NADH + D-xylose right arrow over left arrow E.NADH.D-xylose right arrow over left arrow E.NAD(+).xylitol right arrow over left arrow E.NAD(+) right arrow over left arrow E.NAD(+) right arrow over left arrow E + NAD(+). The net rate constant of dissociation of NAD(+) is approximately 90% rate limiting for k(cat) of D-xylose reduction. It is controlled by the conformational change which precedes nucleotide release and whose rate constant of 40 s(-)(1) is 200 times that of completely rate-limiting E.NADP(+) --> E.NADP(+) step in aldehyde reduction catalyzed by human aldose reductase [Grimshaw, C. E., et al. (1995) Biochemistry 34, 14356-14365]. Hydride transfer from NADH occurs with a rate constant of approximately 170 s(-1). In reverse reaction, the E.NADH --> E.NADH step takes place with a rate constant of 15 s(-1), and the rate constant of ternary-complex interconversion (3.8 s(-1)) largely determines xylitol turnover (0.9 s(-1)). The bound-state equilibrium constant for C. tenuis xylose reductase is estimated to be approximately 45 (=170/3.8), thus greatly favoring aldehyde reduction. Formation of productive complexes, E.NAD(+) and E.NADH, leads to a 7- and 9-fold decrease of dissociation constants of initial binary complexes, respectively, demonstrating that 12-fold differential binding of NADH (K(i) = 16 microM) vs NAD(+) (K(i) = 195 microM) chiefly reflects difference in stabilities of E.NADH and E.NAD(+). Primary deuterium isotope effects on k(cat) and k(cat)/K(xylose) were, respectively, 1.55 +/- 0.09 and 2.09 +/- 0.31 in H(2)O, and 1.26 +/- 0.06 and 1.58 +/- 0.17 in D(2)O. No deuterium solvent isotope effect on k(cat)/K(xylose) was observed. When deuteration of coenzyme selectively slowed the hydride transfer step, (D)()2(O)(k(cat)/K(xylose)) was inverse (0.89 +/- 0.14). The isotope effect data suggest a chemical mechanism of carbonyl reduction by xylose reductase in which transfer of hydride ion is a partially rate-limiting step and precedes the proton-transfer step.  相似文献   

2.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins, and is believed to be the key enzyme responsible for the biological inactivation of these biologically potent eicosanoids. The enzyme utilizes NAD(+) specifically as a coenzyme. Potential amino acid residues involved in binding NAD(+) and facilitating enzyme catalysis have been partially identified. In this report, we propose that three more residues in 15-PGDH, Ile-17, Asn-91, and Val-186, are also involved in the interaction with NAD(+). Site-directed mutagenesis was used to examine their roles in binding NAD(+). Several mutants (I17A, I17V, I17L, I17E, I17K, N91A, N91D, N91K, V186A, V186I, V186D, and V186K) were prepared, expressed as glutathione S-transferase (GST) fusion enzymes in Escherichia coli, and purified by GSH-agarose affinity chromatography. Mutants I17E, I17K, N91L, N91K, and V186D were found to be inactive. Mutants N91A, N91D, V186A, and V186K exhibited comparable activities to the wild type enzyme. However, mutants I17A, I17V, I17L, and V186I had higher activity than the wild type. Especially, the activities of I17L and V186I were increased nearly 4- and 5-fold, respectively. The k(cat)/K(m) ratios of all active mutants for PGE(2) were similar to that of the wild type enzyme. However, the k(cat)/K(m) ratios of mutants I17A and N91A for NAD(+) were decreased 5- and 10-fold, respectively, whereas the k(cat)/K(m) ratios of mutants I17V, N91D, V186I, and V186K for NAD(+) were comparable to that of the wild type enzyme. The k(cat)/K(m) ratios of mutants I17L and V186A for NAD(+) were increased over nearly 2-fold. These results suggest that Ile-17, Asn-91, and Val-186 are involved in the interaction with NAD(+) and contribute to the full catalytic activity of 15-PGDH.  相似文献   

3.
We purified the psychrophilic and thermolabile malate dehydrogenase to homogeneity from a novel psychrotolerant, Flavobacterium frigidimaris KUC-1, isolated from Antarctic seawater. The enzyme was a homotetramer with a molecular weight of about 123 k and that of the subunit was about 32 k. The enzyme required NAD(P)(+) as a coenzyme and catalyzed the oxidation of L-malate and the reduction of oxalacetate specifically. The reaction proceeded through an ordered bi-bi mechanism. The enzyme was highly susceptible to heat treatment, and the half-life time at 40 degrees C was estimated to be 3.0 min. The k(cat)/K(m) (microM(-1).s(-1)) values for L-malate and NAD(+) at 30 degrees C were 289 and 2,790, respectively. The enzyme showed pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of the coenzyme. The enzyme contained 311 amino acid residues and much lower numbers of proline and arginine residues than other malate dehydrogenases.  相似文献   

4.
The Mycobacterium tuberculosis gene Rv2747 encodes a novel 19-kDa ArgA that catalyzes the initial step in L-arginine biosynthesis, namely the conversion of L-glutamate to alpha-N-acetyl-L-glutamate. Initial velocity studies reveal that Rv2747 proceeds through a sequential kinetic mechanism, with K(m) values of 280 mM for L-glutamine and 150 microM for acetyl-coenzyme A and with a k(cat) value of 200 min(-1). Initial velocity studies with L-glutamate showed that even at concentrations of 600 mM, saturation was not observed. Therefore, only a k(cat)/K(m) value of 125 M(-1) min(-1) can be calculated. Inhibition studies reveal that the enzyme is strongly regulated by L-arginine, the end product of the pathway (50% inhibitory concentration, 26 microM). The enzyme was completely inhibited by 500 microM arginine, with a Hill coefficient of 0.60, indicating negatively cooperative binding of L-arginine.  相似文献   

5.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

6.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

7.
Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.  相似文献   

8.
Klimacek M  Nidetzky B 《Biochemistry》2002,41(31):10158-10165
Mannitol dehydrogenases (MDH) are a family of Zn(2+)-independent long-chain alcohol dehydrogenases that catalyze the regiospecific NAD(+)-dependent oxidation of a secondary alcohol group in polyol substrates. pH and primary deuterium kinetic isotope effects on kinetic parameters for reaction of recombinant MDH from Pseudomonas fluorescens with D-mannitol have been measured in H(2)O and D(2)O at 25 degrees C and used to determine the relative timing of C-H and O-H bond cleavage steps during alcohol conversion. The enzymatic rates decreased at low pH; apparent pK values for log(k(cat)/K(mannitol)) and log k(cat) were 9.2 and 7.7 in H(2)O, respectively, and both were shifted by +0.4 pH units in D(2)O. Proton inventory plots for k(cat) and k(cat)/K(mannitol) were determined at pL 10.0 using protio or deuterio alcohol and were linear at the 95% confidence level. They revealed the independence of primary deuterium isotope effects on the atom fraction of deuterium in a mixed H(2)O-D(2)O solvent and yielded single-site transition-state fractionation factors of 0.43 +/- 0.05 and 0.47 +/- 0.01 for k(cat)/K(mannitol) and k(cat), respectively. (D)(k(cat)/K(mannitol)) was constant (1.80 +/- 0.20) in the pH range 6.0-9.5 and decreased at high pH to a limiting value of approximately 1. Measurement of (D)(k(cat)/K(fructose)) at pH 10.0 and 10.5 using NADH deuterium-labeled in the 4-pro-S position gave a value of 0.83, the equilibrium isotope effect on carbonyl group reduction. A mechanism of D-mannitol oxidation by MDH is supported by the data in which the partly rate-limiting transition state of hydride transfer is stabilized by a single solvation catalytic proton bridge. The chemical reaction involves a pH-dependent internal equilibrium which takes place prior to C-H bond cleavage and in which proton transfer from the reactive OH to the enzyme catalytic base may occur. Loss of a proton from the enzyme at high pH irreversibly locks the ternary complex with either alcohol or alkoxide bound in a conformation committed of undergoing NAD(+) reduction at a rate about 2.3-fold slower than the corresponding reaction rate of the protonated complex. Transient kinetic studies for D-mannitol oxidation at pH(D) 10.0 showed that the solvent isotope effect on steady-state turnover originates from a net rate constant of NADH release that is approximately 85% rate-limiting for k(cat) and 2-fold smaller in D(2)O than in H(2)O.  相似文献   

9.
Zhang H  Zhou Y  Bao H  Liu HW 《Biochemistry》2006,45(26):8163-8173
Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of alpha-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD(+) dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His(6)-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a k(cat) value of 15.5 +/- 1.0 min(-)(1). The K(m) values of TviB for UDP-GlcNAc and NAD(+) are 77 +/- 9 microM and 276 +/- 52 microM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The K(m) values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 +/- 1 microM and 42 +/- 2 microM, respectively. The k(cat) value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 +/- 0.5 min(-)(1), while that for the reverse reaction is 39.1 +/- 0.6 min(-)(1). These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production.  相似文献   

10.
Aminopropionaldehyde dehydrogenase was purified to apparent homogeneity from 1,3-diaminopropane-grown cells of Arthrobacter sp. TMP-1. The native molecular mass and the subunit molecular mass of the enzyme were approximately 20,5000 and 52,000, respectively, suggesting that the enzyme is a tetramer of identical subunits. The apparent Michaelis constant (K(m)) for 1,3-diaminopropane was approximately 3 microM. The enzyme equally used both NAD(+) and NADP(+) as coenzymes. The apparent K(m) values for NAD(+) and NADP(+) were 255 microM and 108 microM, respectively. The maximum reaction rates (V(max)) for NAD(+) and NADP(+) were 102 and 83.3 micromol min(-1) mg(-1), respectively. Some tested aliphatic aldehydes and aromatic aldehydes were inert as substrates. The optimum pH was 8.0-8.5. The enzyme was sensitive to sulfhydryl group-modifying reagents.  相似文献   

11.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

12.
Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.  相似文献   

13.
ALDH5 (aka succinic semialdehyde dehydrogenase) is a NAD(+)-dependent aldehyde dehydrogenase crucial for the proper removal of the GABA metabolite succinic semialdehyde (SSA). All known ALDH5 family members contain the conserved amino acid sequence "MITRK". Our studies of rat ALDH5A indicate that residue R166 in this sequence may play a role in the substrate specificity of ALDH5A for the gamma-carboxylated succinic semialdehyde versus other aliphatic and aromatic aldehydes including acetaldehyde and benzaldehyde. We tested the hypothesis that the R166 residue regulates aldehyde specificity by utilizing rat ALDH5A wild-type (R166wt) and R166K, R166H, R166A, and R166E mutants. The V(MAX) using SSA fell whereas the K(M) for SSA increased for all mutants analyzed yielding k(cat)/K(M) (s(-1)/microM) ratios of 52.3 (R166wt), 5.5 (R166K), 0.01 (R166H), 0.008 (R166E), and 0.004 (R166A). Utilization of acetaldehyde by the R166H mutant was similar to R166wt with k(cat)/K(M)'s of 0.003 and 0.002, respectively. Almost no activity towards acetaldehyde was noted for the R166E and R166A mutants. Unexpectedly, the K(M) for NAD(+) changed: 21 microM (R166wt), 81 microM (R166K), 63 microM (R166H), 35 microM (R166E) and 44 microM (R166A). As release of NADH can be a rate-limiting step for ALDH activity, NADH binding was evaluated for R166wt and R166H enzymes. The K(D) of NADH for R166H (0.9 microM) was 11-fold less than that of ALDH5A wt (10.3 microM) and possibly explains the increase in the K(M) for NAD(+). Furthermore, data using R166K and R166H mutants demonstrate that inhibition of enzyme activity by low pH is regulated in part by the R166 residue. Our data indicate that the R166 residue of ALDH5A regulates multiple enzymatic functions.  相似文献   

14.
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.  相似文献   

15.
Heredia VV  Penning TM 《Biochemistry》2004,43(38):12028-12037
3Alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) catalyze the interconversion between 5alpha-dihydrotestosterone (5alpha-DHT), the most potent androgen, and 3alpha-androstanediol (3alpha-diol), a weak androgen metabolite. To identify the rate-determining step in this physiologically important reaction, rat liver 3alpha-HSD (AKR1C9) was used as the protein model for the human homologues in fluorescence stopped-flow transient kinetic and kinetic isotope effect studies. Using single and multiple turnover experiments to monitor the NADPH-dependent reduction of 5alpha-DHT, it was found that k(lim) and k(max) values were identical to k(cat), indicating that chemistry is rate-limiting overall. Kinetic isotope effect measurements, which gave (D)k(cat) = 2.4 and (D)2(O)k(cat) = 3.0 at pL 6.0, suggest that the slow chemical transformation is significantly rate-limiting. When the NADP(+)-dependent oxidation of 3alpha-diol was monitored, single and multiple turnover experiments showed a k(lim) and burst kinetics consistent with product release as being rate-limiting overall. When NAD(+) was substituted for NADP(+), burst phase kinetics was eliminated, and k(max) was identical to k(cat). Thus with the physiologically relevant substrates 5alpha-DHT plus NADPH and 3alpha-diol plus NAD(+), the slowest event is chemistry. R276 forms a salt-linkage with the phosphate of 2'-AMP, and when it is mutated, tight binding of NAD(P)H is no longer observed [Ratnam, K., et al. (1999) Biochemistry 38, 7856-7864]. The R276M mutant also eliminated the burst phase kinetics observed for the NADP(+)-dependent oxidation of 3alpha-diol. The data with the R276M mutant confirms that the release of the NADPH product is the slow event; and in its absence, chemistry becomes rate-limiting. W227 is a critical hydrophobic residue at the steroid binding site, and when it is mutated to alanine, k(cat)/K(m) for oxidation is significantly depressed. Burst phase kinetics for the NADP(+)-dependent turnover of 3alpha-diol by W227A was also abolished. In the W227A mutant, the slow release of NADPH is no longer observed since the chemical transformation is now even slower. Thus, residues in the cofactor and steroid-binding site can alter the rate-determining step in the NADP(+)-dependent oxidation of 3alpha-diol to make chemistry rate-limiting overall.  相似文献   

16.
Functional genomics data suggests that the metabolism of mannitol in the human pathogen Aspergillus fumigatus involves the action of two polyol-specific long-chain dehydrogenases/reductases, mannitol-1-phosphate 5-dehydrogenase (M1PDH) and mannitol 2-dehydrogenase (M2DH). The gene encoding the putative M2DH was expressed in Escherichia coli, and the purified recombinant protein was characterized biochemically. The predicted enzymatic function of a NAD(+)-dependent M2DH was confirmed. The enzyme is a monomer of 58kDa in solution and does not require metals for activity. pH profiles for M2DH and the previously isolated M1PDH were recorded in the pH range 6.0-10.0 for the oxidative and reductive direction of the reactions under conditions where substrate was limiting (k(cat)/K) or saturating (k(cat)). The pH-dependence of logk(cat) was usually different from that of log(k(cat)/K), suggesting that more than one step of the enzymatic mechanism was affected by changes in pH. The greater complexity of the pH profiles of log(k(cat)/K) for the fungal enzymes as compared to the analogous pH profiles for M2DH from Pseudomonas fluorescens may reflect sequence changes in vicinity of the conserved catalytic lysine.  相似文献   

17.
Lee SL  Wang MF  Lee AI  Yin SJ 《FEBS letters》2003,544(1-3):143-147
Human class III alcohol dehydrogenase (ADH3), also known as glutathione-dependent formaldehyde dehydrogenase, exhibited non-hyperbolic kinetics with ethanol at a near physiological pH 7.5. The S(0.5) and k(cat) were determined to be 3.4+/-0.3 M and 33+/-3 min(-1), and the Hill coefficient (h) 2.21+/-0.09, indicating positive cooperativity. Strikingly, the S(0.5) for ethanol was found to be 5.4 x 10(6)-fold higher than the K(m) for S-(hydroxymethyl)glutathione, a classic substrate for the enzyme, whereas the k(cat) for the former was 41% lower than that for the latter. Isotope effects on enzyme activity suggest that hydride transfer may be rate-limiting in the oxidation of ethanol. Kinetic simulations using the experimentally determined Hill constant suggest that gastric ADH3 may highly effectively contribute to the first-pass metabolism at 0.5-3 M ethanol, an attainable range in the gastric lumen during alcohol consumption. The positive cooperativity mainly accounts for this metabolic role of ADH3.  相似文献   

18.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

19.
Comparison of the inferred amino acid sequence of orf AF1736 of Archaeoglobus fulgidus to that of Pseudomonas mevalonii HMG-CoA reductase suggested that AF1736 might encode a Class II HMG-CoA reductase. Following polymerase chain reaction-based cloning of AF1736 from A. fulgidus genomic DNA and expression in Escherichia coli, the encoded enzyme was purified to apparent homogeneity and its enzymic properties were determined. Activity was optimal at 85 degrees C, deltaHa was 54 kJ/mol, and the statin drug mevinolin inhibited competitively with HMG-CoA (Ki 180 microM). Protonated forms of His390 and Lys277, the apparent cognates of the active site histidine and lysine of the P. mevalonii enzyme, appear essential for activity. The mechanism proposed for catalysis of P. mevalonii HMG-CoA reductase thus appears valid for A. fulgidus HMG-CoA reductase. Unlike any other HMG-CoA reductase, the A. fulgidus enzyme exhibits dual coenzyme specificity. pH-activity profiles for all four reactions revealed that optimal activity using NADP(H) occurred at a pH from 1 to 3 units more acidic than that observed using NAD(H). Kinetic parameters were therefore determined for all substrates for all four catalyzed reactions using either NAD(H) or NADP(H). NADPH and NADH compete for occupancy of a common site. k(cat)[NAD(H)]/k(cat)[NADP(H)] varied from unity to under 70 for the four reactions, indicative of slight preference for NAD(H). The results indicate the importance of the protonated status of active site residues His390 and Lys277, shown by altered K(M) and k(cat) values, and indicate that NAD(H) and NADP(H) have comparable affinity for the same site.  相似文献   

20.
An isocitrate dehydrogenase from Zymomonas mobilis was overexpressed in Escherichia coli as a fused protein (ZmIDH). The molecular mass of recombinant ZmIDH, together with its 6× His partner, was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. The purified recombinant ZmIDH displayed maximal activity at 55 °C, pH 8.0 with Mn(2+) and pH 8.5 with Mg(2+). Heat inactivation studies showed that the recombinant ZmIDH was rapidly inactivated above 40 °C. In addition, the recombinant ZmIDH activity was completely dependent on the divalent cation and Mn(2+) was the most effective cation. The recombinant ZmIDH displayed a 165-fold (k(cat)/K(m)) preference for NAD(+) over NADP(+) with Mg(2+), and a 142-fold greater specificity for NAD(+) than NADP(+) with Mn(2+). Therefore, the recombinant ZmIDH has remarkably high coenzyme preference for NAD(+). The catalytic efficiency (k(cat)/K(m)) of the recombinant ZmIDH was found to be much lower than that of its NADP(+)-dependent counterparts. The poor performance of the recombinant ZmIDH in decarboxylating might be improved by protein engineering techniques, thus making ZmIDH a potential genetic modification target for the development of optimized Z. mobilis strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号