首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Leishmania, like other eukaryotes, contains large amounts of actin and a number of actin-related and actin binding proteins. Our earlier studies have shown that deletion of the gene corresponding to Leishmania actin-depolymerizing protein (ADF/cofilin) adversely affects flagellum assembly, intracellular trafficking, and cell division. To further analyze this, we have now created ADF/cofilin site-specific point mutants and then examined (i) the actin-depolymerizing, G-actin binding, and actin-bound nucleotide exchange activities of the mutant proteins and (ii) the effect of overexpression of these proteins in wild-type cells. Here we show that S4D mutant protein failed to depolymerize F-actin but weakly bound G-actin and inhibited the exchange of G-actin-bound nucleotide. We further observed that overexpression of this protein impaired flagellum assembly and consequently cell motility by severely impairing the assembly of the paraflagellar rod, without significantly affecting vesicular trafficking or cell growth. Taken together, these results indicate that dynamic actin is essentially required in assembly of the eukaryotic flagellum.  相似文献   

2.
The driving force behind cell motility is the actin cytoskeleton. Filopodia and lamellipodia are formed by the polymerization and extension of actin filaments towards the cell membrane. This polymerization at the barbed end of the filament is balanced by depolymerization at the pointed end, recycling the actin in a 'treadmilling' process. One protein involved in this process is cofilin/actin-depolymerizing factor (ADF), which can depolymerize actin filaments, allowing treadmilling to occur at an accelerated rate. Cofilin/ADF is an actin-binding protein that is required for actin-filament disassembly, cytokinesis and the organization of muscle actin filaments. There is also evidence that cofilin/ADF enhances cell motility, although a direct requirement in vivo has not yet been shown. Here we show that Drosophila cofilin/ADF, which is encoded by the twinstar (tsr) gene, promotes cell movements during ovary development and oogenesis. During larval development, cofilin/ADF is required for the cell rearrangement needed for formation of terminal filaments, stacks of somatic cells that are important for the initiation of ovarioles. It is also required for the migration of border cells during oogenesis. These results show that cofilin/ADF is an important regulator of actin-based cell motility during Drosophila development.  相似文献   

3.
Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex, capping protein (CP), and actin-depolymerizing factor (ADF)/cofilin in actin "comet tails," using a minimal reconstituted system with nucleation-promoting factor (NPF)-coated beads. The Arp2/3 complex concentrates at nucleation sites near the beads as well as in the first actin shell. CP colocalizes with actin and is homogeneously distributed throughout the comet tail; it serves to constrain the spatial distribution of ATP/ADP-P(i) filament zones to areas near the bead. The association of ADF/cofilin with the actin network is therefore governed by kinetics of actin assembly, actin nucleotide state, and CP binding. A kinetic simulation accurately validates these observations. Following its binding to the actin networks, ADF/cofilin is able to break up the dense actin filament array of a comet tail. Stochastic severing by ADF/cofilin loosens the tight entanglement of actin filaments inside the comet tail and facilitates turnover through the macroscopic release of large portions of the aged actin network.  相似文献   

4.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.  相似文献   

5.
Chick brain actin depolymerizing factor (ADF) is a 19-kDa protein that severs actin filaments and binds actin monomers. We have obtained a cDNA encoding ADF by screening a chick embryo lambda gt11 cDNA library with both a rabbit anti-ADF antiserum and two oligonucleotide probes. Several non-full-length clones of 636 bases and one full-length clone of 1886 bases were isolated and sequenced. The full-length cDNA encodes a protein of 165 amino acids with a calculated molecular weight of 18,520. The deduced amino acid sequence shows 73% identity with the porcine brain actin binding protein cofilin. The coding region of the ADF cDNA has been placed in an expression vector, and the resulting protein shows immunoreactivity with an anti-ADF antiserum but not with an anti-cofilin antibody. The expressed ADF has been purified and has an actin depolymerizing activity identical with that of brain ADF. Like cofilin, ADF contains a sequence similar to the nuclear transport signal sequence of the SV40 large T antigen and a calcium/calmodulin-dependent protein kinase II phosphorylation consensus sequence. Northern blots of both embryonic chick brain and muscle RNA revealed two ADF mRNAs of length 2.1 and 0.9 kilobases. Southern blots suggest that the ADF gene is present in a single copy within the chicken genome. ADF contains regions of homology with other actin binding proteins including tropomyosin, gelsolin, and depactin.  相似文献   

6.
Growth cone motility and navigation in response to extracellular signals are regulated by actin dynamics. To better understand actin involvement in these processes we determined how and in what form actin reaches growth cones, and once there, how actin assembly is regulated. A continuous supply of actin is maintained at the axon tip by slow transport, the mobile component consisting of an unassembled form of actin. Actin is co-transported with actin-binding proteins, including ADF and cofilin, structurally related proteins essential for rapid turnover of actin filaments in vivo. ADF and cofilin activity is regulated through phosphorylation by LIM kinases, downstream effectors of the Rho family of GTPases, Cdc42, Rac and Rho. Attractive and repulsive extracellular guidance cues might locally alter actin dynamics by binding specific GTPase-linked receptors, activating LIM kinases, and subsequently modulating the activity of ADF/cofilin. ADF is enriched in growth cones and is required for neurite outgrowth. In addition, signals that influence growth cone behavior alter ADF/cofilin phosphorylation, and overexpression of ADF enhances neurite outgrowth. Growth promoting effects of laminin are mimicked by expression of constitutively active Cdc42 and blocked by expression of the dominant negative Cdc42. Repulsive effects of myelin and sema3D on growth cones are blocked by expression of constitutively active Rac1 and dominant negative Rac1, respectively. Thus a series of complex pathways must exist for regulating effectors of actin dynamics. The bifurcating nature of the ADF/cofilin phosphorylation pathway may provide the integration necessary for this complex regulation.  相似文献   

7.
Rho family GTPases have important roles in mediating the effects of guidance cues and growth factors on the motility of neuronal growth cones. We previously showed that the neurotrophin BDNF regulates filopodial dynamics on growth cones of retinal ganglion cell axons through activation of the actin regulatory proteins ADF and cofilin by inhibiting a RhoA-dependent pathway that phosphorylates (inactivates) ADF/cofilin. The GTPase Cdc42 has also been implicated in mediating the effects of positive guidance cues. In this article we investigated whether Cdc42 is involved in the effects of BDNF on filopodial dynamics. BDNF treatment increases Cdc42 activity in retinal neurons, and neuronal incorporation of constitutively active Cdc42 mimics the increases in filopodial number and length. Furthermore, constitutively active and dominant negative Cdc42 decreased and increased, respectively, the activity of RhoA in retinal growth cones, indicating crosstalk between these GTPases in retinal growth cones. Constitutively active Cdc42 mimicked the activation of ADF/cofilin that resulted from BDNF treatment, while dominant negative Cdc42 blocked the effects of BDNF on filopodia and ADF/cofilin. The inability of dominant negative Cdc42 to block ADF/cofilin activation and stimulation of filopodial dynamics by the ROCK inhibitor Y-27632 indicate interaction between Cdc42 and RhoA occurs upstream of ROCK. Our results demonstrate crosstalk occurs between GTPases in mediating the effects of BDNF on growth cone motility, and Cdc42 activity can promote actin dynamics via activation of ADF/cofilin.  相似文献   

8.
ADF/cofilin is a highly conserved actin-modulating protein. Reorganization of the actin cytoskeleton in vivo through severing and depolymerizing of F-actin by this protein is essential for various cellular events, such as endocytosis, phagocytosis, cytokinesis, and cell migration. We show that in the ciliate Tetrahymena thermophila, the ADF/cofilin homologue Adf73p associates with actin on nascent food vacuoles. Overexpression of Adf73p disrupted the proper localization of actin and inhibited the formation of food vacuoles. In vitro, recombinant Adf73p promoted the depolymerization of filaments made of T. thermophila actin (Act1p). Knockout cells lacking the ADF73 gene are viable but grow extremely slowly and have a severely decreased rate of food vacuole formation. Knockout cells have abnormal aggregates of actin in the cytoplasm. Surprisingly, unlike the case in animals and yeasts, in Tetrahymena, ADF/cofilin is not required for cytokinesis. Thus, the Tetrahymena model shows promise for future studies of the role of ADF/cofilin in vivo.  相似文献   

9.
The invasive behaviour of tumour cells has been attributed in part to dysregulated cell motility. Members of the ADF/Cofilin family of actin-binding proteins are known to increase microfilament dynamics by increasing the rate at which actin monomers leave the pointed end of the filament and by a filament-severing activity. As depolymerisation is a rate-limiting step in actin dynamics, ADF/Cofilins are suspected to facilitate the motility of cells. To test this, we investigated the influence of cofilin on tumour motility by transient and stably overexpressing cofilin in the human glioblastoma cell line, U373 MG. Several different methods were used to ascertain the level of cofilin in overexpressing clones and this was correlated with their rate of random locomotion. A biphasic relationship between cofilin level and locomotory rate was found. Clones that displayed a moderate amount of overproduction of cofilin were found to have increased rates of locomotion approximately linear to the overproduction of cofilin up to an optimal cofilin level of about 4.5 times that of wild type cells at which the cells were almost twice as fast. However, clones producing more than this optimal amount were found to locomote at progressively reduced speeds. Cells that overexpress cofilin have reduced stress fibres compared to control cells showing that the excess cofilin affects the actin cytoskeleton. We conclude that overexpression of cofilin enhances the motility of glioblastoma tumour cells in a concentration-dependent fashion, which is likely to contribute to their invasiveness.  相似文献   

10.
BACKGROUND: Cellular movements are powered by the assembly and disassembly of actin filaments. Actin dynamics are controlled by Arp2/3 complex, the Wiskott-Aldrich syndrome protein (WASp) and the related Scar protein, capping protein, profilin, and the actin-depolymerizing factor (ADF, also known as cofilin). Recently, using an assay that both reveals the kinetics of overall reactions and allows visualization of actin filaments, we showed how these proteins co-operate in the assembly of branched actin filament networks. Here, we investigated how they work together to disassemble the networks. RESULTS: Actin filament branches formed by polymerization of ATP-actin in the presence of activated Arp2/3 complex were found to be metastable, dissociating from the mother filament with a half time of 500 seconds. The ADF/cofilin protein actophorin reduced the half time for both dissociation of gamma-phosphate from ADP-Pi-actin filaments and debranching to 30 seconds. Branches were stabilized by phalloidin, which inhibits phosphate dissociation from ADP-Pi-filaments, and by BeF3, which forms a stable complex with ADP and actin. Arp2/3 complex capped pointed ends of ATP-actin filaments with higher affinity (Kd approximately 40 nM) than those of ADP-actin filaments (Kd approximately 1 microM), explaining why phosphate dissociation from ADP-Pi-filaments liberates branches. Capping protein prevented annealing of short filaments after debranching and, with profilin, allowed filaments to depolymerize at the pointed ends. CONCLUSIONS: The low affinity of Arp2/3 complex for the pointed ends of ADP-actin makes actin filament branches transient. By accelerating phosphate dissociation, ADF/cofilin promotes debranching. Barbed-end capping proteins and profilin allow dissociated branches to depolymerize from their free pointed ends.  相似文献   

11.
The contractile actin cortex is important for diverse fundamental cell processes, but little is known about how the assembly of F-actin and myosin II motors is regulated. We report that depletion of actin depolymerizing factor (ADF)/cofilin proteins in human cells causes increased contractile cortical actomyosin assembly. Remarkably, our data reveal that the major cellular defects resulting from ADF/cofilin depletion, including cortical F-actin accumulation, were largely due to excessive myosin II activity. We identify that ADF/cofilins from unicellular organisms to humans share a conserved activity to inhibit myosin II binding to F-actin, indicating a mechanistic rationale for our cellular results. Our study establishes an essential requirement for ADF/cofilin proteins in the control of normal cortical contractility and in processes such as mitotic karyokinesis. We propose that ADF/cofilin proteins are necessary for controlling actomyosin assembly and intracellular contractile force generation, a function of equal physiological importance to their established roles in mediating F-actin turnover.  相似文献   

12.
The actin depolymerizing factor (ADF)/cofilins are an essential group of proteins that are important regulators of actin filament turnover in vivo. Although protists and yeasts express only a single member of this family, metazoans express two or more members in many cell types. In cells expressing both ADF and cofilin, differences have been reported in the regulation of their expression, their pH sensitivity, and their intracellular distribution. Each member has qualitatively similar interactions with actin, but quantitative differences have been noted. Here we compared quantitative differences between chick ADF and chick cofilin using several assays that measure G-actin binding, actin filament length distribution, and assembly/disassembly dynamics. Quantitative differences were measured in the critical concentrations of the complexes required for assembly, in the effects of nucleotide and divalent metal on actin monomer binding, in pH-dependent severing, in enhancement of filament minus end off-rates, and in steady-state filament length distributions generated in similar mixtures. Some of these assays were used to compare the activities of several ADF/cofilins from across phylogeny, most of which fall into one of two groups based upon their behavior. The ADF-like group has higher affinities for Mg(2+)-ATP-G-actin than the cofilin-like group and a greater pH-dependent depolymerizing activity.  相似文献   

13.
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo.  相似文献   

14.
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.  相似文献   

15.
Niwa R  Nagata-Ohashi K  Takeichi M  Mizuno K  Uemura T 《Cell》2002,108(2):233-246
The ADF (actin-depolymerizing factor)/cofilin family is a stimulus-responsive mediator of actin dynamics. In contrast to the mechanisms of inactivation of ADF/cofilin by kinases such as LIM-kinase 1 (LIMK1), much less is known about its reactivation through dephosphorylation. Here we report Slingshot (SSH), a family of phosphatases that have the property of F actin binding. In Drosophila, loss of ssh function dramatically increased levels of both F actin and phospho-cofilin (P cofilin) and disorganized epidermal cell morphogenesis. In mammalian cells, human SSH homologs (hSSHs) suppressed LIMK1-induced actin reorganization. Furthermore, SSH and the hSSHs dephosphorylated P cofilin in cultured cells and in cell-free assays. Our results strongly suggest that the SSH family plays a pivotal role in actin dynamics by reactivating ADF/cofilin in vivo.  相似文献   

16.
Fan X  Martin-Brown S  Florens L  Li R 《PloS one》2008,3(11):e3641
The ability of actin filaments to function in cell morphogenesis and motility is closely coupled to their dynamic properties. Yeast cells contain two prominent actin structures, cables and patches, both of which are rapidly assembled and disassembled. Although genetic studies have shown that rapid actin turnover in patches and cables depends on cofilin, how cofilin might control cable disassembly remains unclear, because tropomyosin, a component of actin cables, is thought to protect actin filaments against the depolymerizing activity of ADF/cofilin. We have identified cofilin as a yeast tropomyosin (Tpm1) binding protein through Tpm1 affinity column and mass spectrometry. Using a variety of assays, we show that yeast cofilin can efficiently depolymerize and sever yeast actin filaments decorated with either Tpm1 or mouse tropomyosins TM1 and TM4. Our results suggest that yeast cofilin has the intrinsic ability to promote actin cable turnover, and that the severing activity may rely on its ability to bind Tpm1.  相似文献   

17.
The actin cytoskeleton plays a fundamental role in configuring cell shapes and movements. Actin interacting protein 1 (AIP1)/tryptophan-aspartate-repeat protein 1 (WDR1) induces actin severing and disassembly cooperating with ADF/cofilin. We found that mitotic cell flattening but not rounding was manifested by suppression of AIP1/WDR1 in cells. This mitotic cell flattening was not due to any changes in phosphorylation and distribution of cofilin in cells. We carried out a direct observation of actin filament severing/disassembly assay and found that phosphorylated cofilin still somewhat severs/disassembles actin filaments and that AIP1/WDR1 effaces this in vitro. We suggest that the phosphorylation of ADF/cofilin will be insufficient to completely inhibit actin turnover during mitosis, and that AIP1/WDR1 could abort the severing/disassembly activity somewhat still carried out due to phosphorylated ADF/cofilin. This mechanism could be required to induce cell morphologic changes, especially mitotic cell rounding.  相似文献   

18.
The binding sites for actin depolymerising factor (ADF) and cofilin on G-actin have been mapped by competitive chemical cross-linking using deoxyribonuclease I (DNase I), gelsolin segment 1 (G1), thymosin beta4 (Tbeta4), and vitamin D-binding protein (DbP). To reduce ADF/cofilin induced actin oligomerisation we used ADP-ribosylated actin. Both vitamin D-binding protein and thymosin beta4 inhibit binding by ADF or cofilin, while cofilin or ADF and DNase I bind simultaneously. Competition was observed between ADF or cofilin and G1, supporting the hypothesis that cofilin preferentially binds in the cleft between sub-domains 1 and 3, similar to or overlapping the binding site of G1. Because the affinity of G1 is much higher than that of ADF or cofilin, even at a 20-fold excess of the latter, the complexes contained predominantly G1. Nevertheless, cross-linking studies using actin:G1 complexes and ADF or cofilin showed the presence of low concentrations of ternary complexes containing both ADF or cofilin and G1. Thus, even with monomeric actin, it is shown for the first time that binding sites for both G1 and ADF or cofilin can be occupied simultaneously, confirming the existence of two separate binding sites. Employing a peptide array with overlapping sequences of actin overlaid by cofilin, we have identified five sequence stretches of actin able to bind cofilin. These sequences are located within the regions of F-actin predicted to bind cofilin in the model derived from image reconstructions of electron microscopical images of cofilin-decorated filaments. Three of the peptides map to the cleft region between sub-domains 1 and 3 of the upper actin along the two-start long-pitch helix, while the other two are in the DNase I loop corresponding to the site of the lower actin in the helix. In the absence of any crystal structures of ADF or cofilin in complex with actin, these studies provide further information about the binding sites on F-actin for these important actin regulatory proteins.  相似文献   

19.
Entry of Salmonella into mammalian cells is strictly dependent on the reorganization of actin cytoskeleton induced by a panel of Salmonella type III secreted proteins. Although several factors have been identified to be responsible for inducing the actin polymerization and stability, little is known about how the actin depolymerization contributes to Salmonella-induced actin rearrangements. We report here that activity cycles of host actin depolymerizing factor (ADF and cofilin) are modulated by Salmonella during bacterial entry. Efficient Salmonella internalization involves an initial dephosphorylation of ADF and cofilin followed by phosphorylation, suggesting that ADF and cofilin activities are increased briefly. Expression of a kinase dead form of an ADF/cofilin kinase (LIM kinase 1) or a catalytically inactive ADF/cofilin phosphatase (Slingshot), but not constitutively active LIM kinase 1 or wild-type Slingshot, resulted in decreased invasion. These data suggest that ADF/cofilin activities play a key role in the actin polymerization/depolymerization process induced by Salmonella. The activation of ADF/cofilin is brief and has to be reversed to facilitate efficient bacterial entry. Surprisingly, co-expression of constitutive active ADF and cofilin prevented efficient Salmonella entry, whereas expression of either one alone had no effect. We propose that ADF and cofilin actin-dynamizing activities and their activity cycling via phosphorylation are required for efficient Salmonella internalization.  相似文献   

20.
Cofilin/ADF is a ubiquitous actin-binding protein that is important for rapid actin dynamics in vivo. The long alpha-helix (helix 3 in yeast cofilin) forms the most highly conserved region in cofilin/ADF proteins, and residues in the NH2-terminal half of this alpha-helix have been shown to be essential for actin binding in cofilin/ADF. Recent studies also suggested that the basic residues in the COOH-terminal half of this alpha-helix would play an important role in F-actin binding. In contrast to these studies, we show here that the charged residues in the COOH-terminal half of helix 3 are not important for actin filament binding in yeast cofilin. Mutations in these residues, however, result in a small defect in actin monomer interactions. We also show that yeast cofilin can differentiate between various phosphatidylinositides, and mapped the PI(4,5)P2 binding site by using a collection of cofilin mutants. The PI(4,5)P2 binding site of yeast cofilin is a large positively charged surface that consists of residues in helix 3 as well as residues in other parts of the cofilin molecule. This suggests that cofilin/ADF proteins probably interact simultaneously with more than one PI(4,5)P2 molecule. The PI(4,5)P2-binding site overlaps with areas that are important for F-actin binding, explaining why the actin-related activities of cofilin/ADF are inhibited by PI(4,5)P2. The biological roles of actin and PI(4,5)P2 interactions of cofilin are discussed in light of phenotypes of specific yeast strains carrying mutations in residues that are important for actin and PI(4,5)P2 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号