首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Entner-Doudoroff (ED) pathway is a classic central pathway of d-glucose metabolism in all three phylogenetic domains. On the other hand, Archaea and/or bacteria possess several modified versions of the ED pathway, in which nonphosphorylated intermediates are involved. Several fungi, including Pichia stipitis and Debaryomyces hansenii, possess an alternative pathway of L-rhamnose metabolism, which is different from the known bacterial pathway. Gene cluster related to this hypothetical pathway was identified by bioinformatic analysis using the metabolic enzymes involved in analogous sugar pathways to the ED pathway. Furthermore, the homologous gene cluster was found not only in many other fungi but also several bacteria, including Azotobacter vinelandii. Four putative metabolic genes, LRA1-4, were cloned, overexpressed in Escherichia coli, and purified. Substrate specificity and kinetic analysis revealed that nonphosphorylated intermediates related to L-rhamnose are significant active substrates for the purified LRA1-4 proteins. Furthermore, L-2-keto-3-deoxyrhamnonate was structurally identified as both reaction products of dehydration by LRA3 and aldol condensation by LRA4. These results suggested that the LRA1-4 genes encode L-rhamnose 1-dehydrogenase, L-rhamnono-gamma-lactonase, L-rhamnonate dehydratase, and L-KDR aldolase, respectively, by which L-rhamnose is converted into pyruvate and L-lactaldehyde through analogous reaction steps to the ED pathway. There was no evolutionary relationship between L-KDR aldolases from fungi and bacteria.  相似文献   

2.
Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.  相似文献   

3.
Y M Chen  Y Zhu    E C Lin 《Journal of bacteriology》1987,169(7):3289-3294
Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilation. Mutants that grow on L-1,2-propanediol as a carbon and energy source also depend on the ald gene product for the conversion of L-lactaldehyde to L-lactate.  相似文献   

4.
Escherichia coli cannot grow on L-lyxose, a pentose analog of the 6-deoxyhexose L-rhamnose, which supports the growth of this and other enteric bacteria. L-Rhamnose is metabolized in E. coli by a system that consists of a rhamnose permease, rhamnose isomerase, rhamnulose kinase, and rhamnulose-1-phosphate aldolase, which yields the degradation products dihydroxyacetone phosphate and L-lactaldehyde. This aldehyde is oxidized to L-lactate by lactaldehyde dehydrogenase. All enzymes of the rhamnose system were found to be inducible not only by L-rhamnose but also by L-lyxose. L-Lyxose competed with L-rhamnose for the rhamnose transport system, and purified rhamnose isomerase catalyzed the conversion of L-lyxose into L-xylulose. However, rhamnulose kinase did not phosphorylate L-xylulose sufficiently to support the growth of wild-type E. coli on L-lyxose. Mutants able to grow on L-lyxose were analyzed and found to have a mutated rhamnulose kinase which phosphorylated L-xylulose as efficiently as the wild-type enzyme phosphorylated L-rhamnulose. Thus, the mutated kinase, mapped in the rha locus, enabled the growth of the mutant cells on L-lyxose. The glycolaldehyde generated in the cleavage of L-xylulose 1-phosphate by the rhamnulose-1-phosphate aldolase was oxidized by lactaldehyde dehydrogenase to glycolate, a compound normally utilized by E. coli.  相似文献   

5.
Escherichia coli K-12 converts L-fucose to dihydroxyacetone phosphate (C-1 to C-3) and L-lactaldehyde (C-4 to C-6) by a pathway specified by the fuc regulon. Aerobically, L-lactaldehyde serves as a carbon and energy source by the action of an aldehyde dehydrogenase of broad specificity; the product, L-lactate, is then converted to pyruvate. Anaerobically, L-lactaldehyde serves as an electron acceptor to regenerate NAD from NADH by the action of an oxidoreductase; the reduced product, L-12-propanediol, is excreted. A strain selected for growth on L-galactose (a structural analog of L-fucose) acquired a broadened inducer specificity because of an altered fucR gene encoding the activator protein for the fuc regulon (Y. Zhu and E. C. C. Lin, J. Mol. Evol. 23:259-266, 1986). In this study, a second mutation that abolished aldehyde dehydrogenase activity was discovered. The L-fucose pathway converts L-galactose to dihydroxyacetone phosphate and L-glyceraldehyde. Aldehyde dehydrogenase then converts L-glyceraldehyde to L-glycerate, which is toxic. Loss of the dehydrogenase averts the toxicity during growth on L-galactose, but reduces by one-half the aerobic growth yield on L-fucose. When mutant cells induced in the L-fucose system were incubated with radioactive L-fucose, accumulation of radioactivity occurred if the substrate was labeled at C-1 but not if it was labeled C-6. Complete aerobic utilization of carbons 4 through 6 of L-fucose depends not only on an adequate activity of aldehyde dehydrogenase to trap L-lactaldehyde as its anionic acid but also on the lack of L-1,2-propanediol oxidoreductase activity, which converts L-lactaldehyde to a readily excreted alcohol.  相似文献   

6.
Azotobacter vinelandii cell extracts reduced NAD and oxidized d-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO(2) at the first carbon position of the d-galactose molecule. This suggested that Azotobacter vinelandii metabolizes d-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway, d-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent K(m)s for NAD and d-galactose were 0.125 and 0.56 mM, respectively. Besides d-galactose, the active fraction of this galactose dehydrogenase also oxidized l-arabinose effectively. The electron acceptor for d-galactose or l-arabinose oxidation, NAD, could not be replaced by NADP. These substrate specificities were different from those reported in Pseudomonas saccharophila, Pseudomonas fluorescens, and Rhizobium meliloti.  相似文献   

7.
L-Lactaldehyde is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. Under aerobic conditions, L-lactaldehyde is oxidized to L-lactate by the enzyme lactaldehyde dehydrogenase, while under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol by the enzyme propanediol oxidoreductase. Aerobic growth on either of the methyl pentoses induces a lactaldehyde dehydrogenase enzyme which is inhibited by NADH and is very stable under anaerobic conditions. In the absence of oxygen, the cell shifts from the oxidation of L-lactaldehyde to its reduction, owing to both the induction of propanediol oxidoreductase activity and the decrease in the NAD/NADH ratio. The oxidation of L-lactaldehyde to L-lactate is again restored upon a change to aerobic conditions. In this case, only the NAD/NADH ratio may be invoked as a regulatory mechanism, since both enzymes remain active after this change. Experimental evidence in the presence of rhamnose with mutants unable to produce L-lactaldehyde and mutants capable of producing but not further metabolizing it points toward L-lactaldehyde as the effector molecule in the induction of lactaldehyde dehydrogenase. Analysis of a temperature-sensitive mutation affecting the synthesis of lactaldehyde dehydrogenase permitted us to locate an apparently single regulator gene linked to the ald locus at 31 min and probably acting as a positive control element on the expression of the structural gene.  相似文献   

8.
9.
In Arthrobacter pyridinolis, a respiration-coupled transport system for L-rhamnose caused accumulation of free L-rhamnose, while a phosphoenolpyruvate: L-rhamnose phosphotransferase system caused accumulation of L-rhamnose I-phosphate (Levinson & Krulwich, 1974). The pathways for subsequent metabolism of L-rhamnose and L-rhamose I-phosphate have now been investigated. Arthrobacter pyridinolis contains an inducible L-rhamnose isomerase and L-rhamnulokinase, as well as a constitutive L-rhamnulose I-phosphate aldolase. Results with mutants which are unable to metabolize L-rhamnose suggest the presence of an L-rhamnose I-phosphate phosphatase, which forms free L-rhamnose by hydrolysis of L-rhamnose I-phosphate produced by the phosphotransferase system. Mutants which lack this enzyme exhibited severe inhibition of growth in the presence of L-rhamnose plus any of a variety of carbon sources. There is some evidence that this inhibition was due to accumulation of L-rhamnose I-phosphate at toxic concentrations within the bacteria. The metabolism of L-rhamnose transported by the phosphotransferase system therefore appears to occur by hydrolysis of L-rhamnose I-phosphate to free L-rhamnose by a phosphatase. Metabolism of the L-rhamnose thus produced, and of that accumulated by the respiration-coupled transport system, the proceeds by the sequence of reactions: L-rhamnose leads to L-rhamnulose leads to L=rhamnulose I-phosphate leads to dihydroxyacetone phosphate plus L-lactaldehyde.  相似文献   

10.
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.  相似文献   

11.
12.
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.  相似文献   

13.
14.
We have examined aspects of the second catalytic activity of alcohol dehydrogenase from horse liver (LADH), which involves an apparent dismutation of an aldehyde substrate into alcohol and acid in the presence of LADH and NAD. Using the substrate p-trifluoromethylbenzaldehyde, we have observed various bound complexes by 19F NMR in an effort to further characterize the mechanism of the reaction. The mechanism appears to involve the catalytic activity of LADH · NAD · aldehyde complex which reacts to form an enzyme · NADH · acid complex. The affinity of the acid product for LADH · NADH is weak and the acid product readily desorbs from the ternary complex. The resulting LADH · NADH can then react with a second molecule of aldehyde to form NAD and the corresponding alcohol. The result is the conversion of two molecules of aldehyde to one each of acid and alcohol, with LADH and NAD acting catalytically. This sequence of reactions can also explain the slow formation of acid product observed when alcohol and NAD are incubated with the enzyme.  相似文献   

15.
In Escherichia coli, an aldehyde dehydrogenase that catalyzes the oxidation of L-lactaldehyde to L-lactate is induced not only by L-fucose, L-rhamnose or D-arabinose, but also by growth in the presence of glutamate or amino acids yielding glutamate, with the exception of proline. Induction by these amino acids requires glutamate accumulation. 4-Aminobutyric acid also induces this aldehyde dehydrogenase through its transamination to glutamate. Growth on 2-oxoglutarate, the tricarboxylic acid cycle intermediate with which glutamate is in equilibrium, also induces this aldehyde dehydrogenase. Conditions in which the conversion of 2-oxoglutarate into glutamate is highly restricted displayed unchanged rates of induction by 2-oxoglutarate, indicating that glutamate induces the aldehyde dehydrogenase through 2-oxoglutarate formation. Evidence is presented showing that L-fucose- and 2-oxoglutarate-inducing systems share the same regulatory protein. Induction by growth on either of these two compounds is repressed both by glucose and by glycerol. Addition of cAMP to these cultures partially recovers the glucose-repressed aldehyde dehydrogenase activity, while this nucleotide has no effect on the glycerol-mediated repression. These results indicate that ald is under carbon regulation mediated by at least two different mechanisms.  相似文献   

16.
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.  相似文献   

17.
A novel bacterial in vivo selection for pyruvate aldolase activity is described. Pyruvate kinase deficient cells, which lack the ability to biosynthetically generate pyruvate, require supplementation of exogenous pyruvate when grown on ribose. Supplementation with pyruvate concentrations as low as 50 microM rescues cell growth. A known substrate of the KDPG aldolases, 2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (KHPB), also rescues cell growth, consistent with retroaldol cleavage by KDPG aldolase and rescue through pyruvate release. An initial round of selection against 2-keto-4-hydroxyoctonate (KHO), a nonsubstrate for wild-type aldolase, produced three mutants with intriguing alterations in protein sequence. This selection system allows rapid screening of mutant enzyme libraries and facilitates the discovery of enzymes with novel substrate specificities.  相似文献   

18.
Reher M  Schönheit P 《FEBS letters》2006,580(5):1198-1204
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.  相似文献   

19.
A method is described for the detection of 2-keto-4-hydroxyglutarate aldolase activity after electrophoresis of the enzyme on polyacrylamide gels. When gels are incubated with substrate (2-keto-4-hydroxyglutarate), activity is seen as a yellow-colored band due to interaction of the product )glyoxylate) with ortho-aminobenzaldehyde and glycine. Positive results have been obtained using either crude cell-free preparations or homogeneous enzyme from Escherichia coli as well as with highly purified samples of aldolase from bovine liver or kidney extracts. The method is potentially applicable to other aldolases that liberate an aliphatic aldehyde as a product; modifications and limitations of the procedure for detecting fructose 1,6-diphosphate aldolase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and 2-deoxyribose-5-phosphate aldolase activities have been explored.  相似文献   

20.
In Escherichia coli, L-fucose is dissimilated via an inducible pathway mediated by L-fucose permease, L-fucose isomerase, L-fucose kinase, and L-fuculose 1-phosphate aldolase. The last enzyme cleaves the six-carbon substrate into dihydroxyacetone phosphate and L-lactaldehyde. Aerobically, lactaldehyde is oxidized to L-lactate by a nicotinamide adenine dinucleotide (NAD)-linked dehydrogenase. Anaerobically, lactaldehyde is reduced by an NADH-COUPLED REDUCTASE TO L-1,2-propanediol, which is lost into the medium irretrievably, even when oxygen is subsequently introduced. Propanediol excretion is thus the end result of a dismutation that permits further anaerobic metabolism of dihydroxy-acetone phosphate. A mutant selected for its ability to grow aerobically on propanediol as a carbon and energy source was reported to produce lactaldehyde reductase constitutively and at high levels, even aerobically. Under the new situation, this enzyme serves as a propanediol dehydrogenase. It was also reported that the mutant had lost the ability to grow on fucose. In the present study, it is shown that in wild-type cells the full synthesis of lactaldehyde dehydrogenase requires the presence of both molecular oxygen and a small molecule effector, and the full synthesis of lactaldehyde reductase requires anaerobiosis and the presence of a small molecule effector. The failure of mutant cells to grow on fucose reflects the impairment of a regulatory element in the fucose system that prevents the induction of the permease, the isomerase, and the kinase. The aldolase, on the other hand, is constitutively synthesized. Three independent fucose-utilizing revertants of the mutant all produce the permease, the isomerase, the kinase, as well as the aldolase, constitutively. These strains grow less well than the parental mutant on propanediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号