共查询到20条相似文献,搜索用时 0 毫秒
1.
Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. 总被引:18,自引:8,他引:18 下载免费PDF全文
Double-stranded RNA adenosine deaminase (dsRAD), previously called the double-stranded RNA (dsRNA) unwinding/modifying activity, modifies adenosines to inosines within dsRNA. We used ribonuclease U2 and a mutant of ribonuclease T1 to map the sites of modification in several RNA duplexes. We found that dsRAD had a 5' neighbor preference (A = U > C > G) but no apparent 3' neighbor preference. Further, the proximity of the strand termini affected whether an adenosine was modified. Most importantly, dsRAD exhibited selectivity, modifying a minimal number of adenosines in short dsRNAs. Our results suggest that the specific editing of glutamate receptor subunit B mRNA could be performed in vivo by dsRAD without the aid of specificity factors, and support the hypothesis that dsRAD is responsible for hypermutations in certain RNA viruses. 相似文献
2.
Dextran-bound adenosine, inosine, and nebularine have been prepared by carbodiimide coupling of their 2',3'-O-(4-carboxyethyl-1-methylbutylidene) cyclic acetal derivatives to 6-aminohexyldextran or 12-aminododecanyldextran. The latter polymers were prepared by cyanogen-bromide activation of dextran T80 followed by reaction with 1,6-diaminohexane or 1,12-diaminododecane. A high CNBr concentration leads to high-molecular-weight material, probably due to cross-linking, accompanied by a decrease in the digestion velocity using endo-dextranase from Penicillium species (EC 3.2.1.11). The dextran-bound nucleosides, as well as the nucleoside 2',3'-O-(4-ethoxycarbonyl-1-methylbutylidene) acetal derivatives, were tested as substrates and inhibitors for adenosine deaminase. The Km of the adenosine acetal ester is identical to that of adenosine which shows that acetalation does not hinder complex formation. Since the maximum velocity of deamination is decreased fourfold, the modified substrate does not fit as well as the nucleoside. The polymer-bound acetals show a 3-8-fold increase of Km or Ki and unchanged V compared to the corresponding acetals while dextranase digestion of the support does not alter the kinetic data. This indicates that the length of the polysaccharide chain does not interfere either with the complex formation or with the catalytic activity of the modified substrate. Since the activation energies of the deamination reactions of adenosine, its acetal ester, and dextran-linked adenosine are all similar (29.8-32.3 kJ mol-1) it is concluded that no diffusion control of the enzymatic reaction results from the binding of the nucleoside acetals to dextran T80. 相似文献
3.
S Frederiksen 《Archives of biochemistry and biophysics》1966,113(2):383-388
4.
Alessandrini L Ciuffreda P Pavlovic R Santaniello E 《Nucleosides, nucleotides & nucleic acids》2008,27(1):31-36
The deamination rate of 2',3'-isopropylidene adenosine catalyzed by adenosine deaminase (ADA) from calf intestine and adenylate deaminase (AMPDA) from Aspergillus species has been evaluated and compared with that of the enzymatic reactions of adenosine, to elucidate the influence of the protecting group on enzyme activity. 相似文献
5.
6.
Brakta M Murthy D Ellis L Phadtare S 《Bioorganic & medicinal chemistry letters》2002,12(11):1489-1492
New phenyl adenine compounds 5-7 were synthesized as analogues of adenosine and studied for their adenosine deaminase (ADA) substrate activity. The 9-[(o-hydroxymethyl)phenyl]methyl]adenine 5 and 9-[(m-hydroxymethyl)phenyl]adenine 7 were deaminated by ADA, and 9-[(o-hydroxyethyl)phenyl]adenine 6 was not deaminated up to 7 days. The ADA substrates 5 and 7 were deaminated quantitatively to their inosine analogues in 10 and 6h, respectively. 相似文献
7.
W P Schrader C A West N L Strominger 《The journal of histochemistry and cytochemistry》1987,35(4):443-451
Adenosine deaminase and adenosine deaminase complexing protein have been localized in rabbit brain. Brains fixed in paraformaldehyde or in Clarke's solution were blocked coronally. Blocks from brains fixed in paraformaldehyde were either frozen in liquid nitrogen or embedded in paraffin. Tissue fixed in Clarke's solution was embedded in paraffin. Sections from each block were stained by the peroxidase-antiperoxidase method for adenosine deaminase or complexing protein using affinity-purified goat antibodies. Adenosine deaminase and complexing protein did not co-localize. Adenosine deaminase was detected in oligodendroglia and in endothelial cells lining blood vessels, whereas complexing protein was concentrated in neurons. The subcellular location and appearance of the peroxidase reaction product associated with individual cells was also quite distinctive. The cell bodies of adenosine deaminase-positive oligodendroglia were filled with intense deposits of peroxidase reaction product. In contrast to oligodendroglia, the reaction product associated with most neurons stained for complexing protein was concentrated in granular-appearing cytoplasmic deposits. In some instances, these deposits were clustered about the nuclear membrane. Staining of neurons in the granular layer of cerebellum was an exception. Granule cells were lightly outlined by peroxidase reaction product. Cerebellar islands, also referred to as glomeruli, were stained an intense uniform brown. These results raise the possibility that oligodendroglia and blood vessel endothelia, through the action of adenosine deaminase, might play a role in controlling the concentration of extracellular adenosine in brain. They do not, however, support the suggestion that complexing protein aids in adenosine metabolism by positioning adenosine deaminase on the plasma membrane. 相似文献
8.
A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (-)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR. 相似文献
9.
10.
11.
Adenosine deaminase isoenzyme 2 (ADA2) was isolated from human pleural fluid for the first time. Molecular and kinetic properties were characterized. It was shown that the inhibitors of adenosine deaminase isoenzyme 1 (ADA1), adenosine, and erithro-9-(2-hydroxy-3-nonyl)adenine (EHNA) derivatives are poor inhibitors of ADA2. Comparison of the interaction of ADA2 and ADA1 with adenosine and its derivative, 1-deazaadenosine, indicates that the isoenzymes have similar active centers. The absence of ADA2 inhibition by EHNA is evidence of a difference of these active centers in a close environment. The possible role of Zn2+ ions and the participation of acidic amino acids Glu and Asp in adenosine deamination catalyzed by ADA2 were shown. 相似文献
12.
Ali EM 《Experimental parasitology》2008,119(2):285-290
Nucleotidase cascades (apyrase, 5′ nucleotidase, and adenosine deaminase (ADA) were investigated in the parasitic trematode Fasciola gigantica. ADA had the highest activity in the nucleotidase cascades. Adenosine deaminase was purified from F. gigantica through acetone precipitation and chromatography on CM-cellulose. Two forms of enzyme (ADAI, ADAII) were separated. ADAII was purified to homogeneity after chromatography on Sephacryl S-200. The molecular mass was 29 KDa for the native and denatured enzyme using gel filtration and SDS-PAGE, respectively. The enzyme (ADAII) had a pH optimum at 7.5 and a Km 1.0 mM adenosine, a temperature optimum at 40 °C and heat stability up to 40 °C. The order of effectiveness of metals as inhibitors was found to be Hg2+ > Mn2+ > Cu2+ > Ca2+ > Zn2+ > Ni2+ > Ba2+. 相似文献
13.
14.
Population genetics of adenosine deaminase 总被引:1,自引:0,他引:1
15.
16.
17.
Novel substrate of adenosine deaminase 总被引:2,自引:0,他引:2
K K Ogilvie L Slotin P Rheault 《Biochemical and biophysical research communications》1971,45(2):297-300
18.
19.
20.
Gracia E Pérez-Capote K Moreno E Barkešová J Mallol J Lluís C Franco R Cortés A Casadó V Canela EI 《The Biochemical journal》2011,435(3):701-709
A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs. 相似文献