首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spectrum of respiratory syncytial virus-encoded proteins was examined in infected cell extracts by standard polyacrylamide gel electrophoresis and by two-dimensional gel analysis. Polyacrylamide gel electrophoresis analysis of a variety of respiratory syncytial virus-infected, actinomycin D-treated cell lines revealed the presence of as many as nine virus-encoded proteins. Seven of these nine proteins were immunoprecipitated by anti-respiratory syncytial serum. Only one major band of [3H]glucosamine was detected in infected cell extracts (Vp86), whereas the reported major virion glycoprotein (Vp48-53) was difficult to detect in infected cells when carbohydrate labels were employed. Two-dimensional gel analysis easily identified seven viral proteins, and one other was tentatively identified. The reported major virion glycoprotein again was not consistently detected. The results of this study confirm the existence of a virus-coded glycoprotein (Vp86) in infected cell extracts. The existence of this glycoprotein in the purified virion has been in dispute, but the apparent low methionine content of this protein may be the reason for this controversy.  相似文献   

2.
3.
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.  相似文献   

4.
The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease.  相似文献   

5.
6.
7.
8.
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in infants and children. To study RSV replication, we have developed an in vitro model of human nasopharyngeal mucosa, human airway epithelium (HAE). RSV grows to moderate titers in HAE, though they are significantly lower than those in a continuous epithelial cell line, HEp-2. In HAE, RSV spreads over time to form focal collections of infected cells causing minimal cytopathic effect. Unlike HEp-2 cells, in which wild-type and live-attenuated vaccine candidate viruses grow equally well, the vaccine candidates exhibit growth in HAE that parallels their level of attenuation in children.  相似文献   

9.
4-Methoxycinnamaldehyde, an active constituent of Agastache rugosa, was examined for its cytoprotective activity against RSV by XTT method in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde could effectively inhibit cytopathic effect of RSV (p<0.0001) with an estimated IC50 of 0.055 μg/ml and a selectivity index (SI) of 898.2. 4-Methoxycinnamaldehyde (0.03 μg/ml) could inhibit viral entrance by interfering viral attachment (IC50 of 0.06 μg/ml; p<0.0001) and internalization (IC50 of 0.01 μg/ml; p<0.0001). 4-Methoxycinnamaldehyde significantly increased the basal production of IFN (p=0.0015), but not the virus-induced IFN production. Therefore, its cytoprotective activity against RSV was not mediated by interferon. In conclusion, 4-methoxycinnamaldehyde might be helpful to manage the disease induced by RSV infection.  相似文献   

10.
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.  相似文献   

11.
The nature of neutrophil-respiratory syncytial virus (RSV) interaction was investigated by assessing factors that influence neutrophil adherence to RSV-infected tissue culture monolayers. The adherence of neutrophils to infected cells was directly proportional to the degree of RSV replication as evidenced by infectious virus production, cytopathological changes, or viral antigen appearance. Sixty-one percent of the neutrophils adhered to the RSV-infected cells as compared with 52.7% on noninfected monolayers (P less than 0.05). The addition of RSV-specific antibody markedly increased polymorphonuclear leukocyte adherence to 88.5% (P less than 0.001). Complement in the absence of antibody augmented polymorphonuclear leukocyte adherence, but to a lesser degree, 69.0% (P less than 0.025). Arachidonic acid metabolism appeared to play a critical role in the adherence process; thromboxane was the single most important arachidonic acid metabolite. Inhibition of thromboxane synthesis reduced antibody-dependent polymorphonuclear leukocyte adherence on RSV-infected cells to 52.3% (P less than 0.025). These observations suggest a role for neutrophils in RSV infection. It is proposed that neutrophils may participate in RSV infection at the site of viral replication through the attachment to infected cells and the subsequent release of mediators of inflammation.  相似文献   

12.
Antigens encoded by MAGE genes are of particular interest for cancer immunotherapy because they are tumor specific and shared by tumors of different histological types. Several clinical trials are in progress with MAGE peptides, proteins, recombinant poxviruses, and dendritic cells (DC) pulsed with peptides or proteins. The use of gene-modified DC would offer the major advantage of a long-lasting expression of the transgene and a large array of antigenic peptides that fit into the different HLA molecules of the patient. In this study, we tested the ability of gene-modified DC to prime rare Ag-specific T cells, and we identified a new antigenic peptide of clinical interest. CD8(+) T lymphocytes from an individual without cancer were stimulated with monocyte-derived DC, which were infected with a second-generation lentiviral vector encoding MAGE-3. A CTL clone was isolated that recognized peptide EGDCAPEEK presented by HLA-Cw7 molecules, which are expressed by >40% of Caucasians. Interestingly, this new tumor-specific antigenic peptide corresponds to position 212-220 of MAGE-2, -3, -6, and -12. HLA-Cw7 tumor cell lines expressing one of these MAGE genes were lysed by the CTL, indicating that the peptide is efficiently processed in tumor cells and can therefore be used as target for antitumoral vaccination. The risk of tumor escape due to appearance of Ag-loss variants should be reduced by the fact that the peptide is encoded by several MAGE genes.  相似文献   

13.

Background

Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding) that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers.

Results

Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils.

Conclusions

The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various locations along fibers in structures prevented from rotating at one end reveal that the rate varied linearly from zero at the blocked end to maximum at the distal end. The increasing number of twisting cells in growing fibers caused the distal end to continuously rotate faster. When the free end was intermittently prevented from rotating a torque developed which was relieved by supercoiling. On a solid surface the supercoils moved toward the end permanently blocked from rotating as a result of supercoil rolling over the surface and the formation of new supercoils that reduced fiber length between the initial supercoil and the wire tether. All of the motions are ramifications of cell growth with twist and the highly ordered multicellular state of macrofibers.  相似文献   

14.
Persistent infection of cells in culture by respiratory syncytial virus.   总被引:4,自引:0,他引:4  
The virus-cell relationship of RS virus and the HEp-2 cell line has been examined. The production of cytopathic effect (c.p.e.) on HEp-2 cells has been found to be dependent upon the passage level of the cell line. Cells at lower passage levels exhibit c.p.e. in the form of syncytium formation, while those at higher passage levels no longer exhibit this effect. Cells infected at higher passage levels are covertly infected and continue to produce large amounts of infectious virus which remains cell-associated. On continued passage, these cells remain infected with virus but show no c.p.e. and release little if any infectious virus into the medium. Examination of the RNA species present in infected cells revealed that similar species are present in both the overtly and covertly infected cells.  相似文献   

15.
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.  相似文献   

16.
Human alveolar macrophages (AM) are susceptible to infection with respiratory syncytial virus (RSV), but the infection is abortive after the initial cycles of virus replication. We have investigated if RSV infection of AM results in the production of cytokines TNF, IL-6, and IL-8, all of which may modulate inflammatory and immune responses to the virus, as well as may directly protect respiratory epithelial cells against spread of infection. Within 1 h after interaction with RSV, increased mRNA levels were found for all three cytokines. Peak expression of the mRNAs occurred at 3 to 6 h. The virus most effectively induced TNF mRNA expression greater than IL-6 mRNA greater than IL-8 mRNA, as compared to cytokine mRNA expression induced by bacterial endotoxin. Inactivated virus was almost as effective as live virus in inducing and maintaining increased IL-6 and IL-8 mRNA over 16 h, whereas live infectious RSV was necessary for maintaining TNF mRNA expression over the same time. Protein concentrations of the different cytokines in the supernatants of infected AM reflected the increased levels of mRNA in the cells. Despite the high levels of cytokines with possible antiviral activity (TNF and IL-6) in the AM supernatants, neither supernatants nor rTNF when added to bronchial epithelial cells protected them from infection with RSV. However, TNF, IL-1, and RSV, but not IL-6, induced IL-8 and IL-6 mRNA expression by the bronchial epithelial cells suggesting that cytokines produced by RSV-infected AM may be more important in modulating the inflammatory response in infection than directly interfering with virus infection/replication of airway epithelium.  相似文献   

17.
18.
Memory CD4 T-cell responses against respiratory syncytial virus (RSV) were evaluated in peripheral blood mononuclear cells of healthy blood donors with gamma interferon enzyme-linked immunospot (Elispot) assays. RSV-specific responses were detected in every donor at levels varying between 0.05 and 0.3% of CD4 T cells. For all donors tested, a considerable component of the CD4 T-cell response was directed against the fusion (F) protein of RSV. We characterized a set of 31 immunodominant antigenic peptides targeted by CD4 T cells in the context of the most prevalent HLA class II molecules within the Caucasian population. Most antigenic peptides were HLA-DR restricted, whereas two dominant DQ peptides were also identified. The antigenic peptides identified were located across the entire sequence of the F protein. Several peptides were presented by more than one major histocompatibility complex class II molecule. Furthermore, most donors recognized several F peptides. Detailed knowledge about immunodominant antigenic peptides will facilitate the ability to monitor CD4 T-cell responses in patients and the measurement of correlates of protection in vaccinated subjects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号