首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystal structures of four pyrrolo(2,3-d)pyrimidine-based antifolate compounds, developed as inhibitors of thymidylate synthase (TS) in a strategy to circumvent drug-resistance, have been determined in complexes with their in vivo target, human thymidylate synthase, and with the structurally best-characterized Escherichia coli enzyme, to resolutions of 2.2-3.0 A. The 2.9 A crystal structure of a complex of human TS with one of the inhibitors, the multi-targeted antifolate LY231514, demonstrates that this compound induces a "closed" enzyme conformation and leads to formation of a covalent bond between enzyme and substrate. This structure is one of the first liganded human TS structures, and its solution was aided by mutation to facilitate crystallization. Structures of three other pyrrolo(2,3-d)pyrimidine-based antifolates in complex with Escherichia coli TS confirm the orientation of this class of inhibitors in the active site. Specific interactions between the polyglutamyl moiety and a positively charged groove on the enzyme surface explain the marked increase in affinity of the pyrrolo(2,3-d)pyrimidine inhibitors once they are polyglutamylated, as mediated in vivo by the cellular enzyme folyl polyglutamate synthetase.  相似文献   

2.
An important unresolved issue in antifolate pharmacology is the basis for the observation that the major portion of cellular tetrahydrofolate cofactors is preserved after dihydrofolate reductase activity is abolished by antifolates despite the fact that tetrahydrofolate cofactor-dependent purine and pyrimidine biosynthesis ceases. This has been attributed to feedback inhibition of thymidylate synthase by dihydrofolate polyglutamates that accumulate in the presence of antifolates. This report combines network thermodynamic modeling and experimental observations to evaluate the effects of direct inhibition of thymidylate synthase at the 5,10-methylenetetrahydrofolate binding site with a potent lipophilic quinazoline antifolate PD130883 on folate oxidation in cells. Computer simulations predict and the data indicate that marked PD130883 suppression of thymidylate synthase only slows the rate but not the extent of tetrahydrofolate cofactor interconversion to dihydrofolate upon complete suppression of dihydrofolate reductase with trimetrexate. These observations are consistent with earlier studies from this laboratory with fluorodeoxyuridine inhibition at the deoxyuridylate binding site. Hence, the much weaker inhibition by dihydrofolate polyglutamates at the level of thymidylate synthase cannot account for the apparent preservation of tetrahydrofolate cofactor pools in cells and has virtually no pharmacologic significance under conditions in which antifolates completely suppress dihydrofolate reductase. The extent of interconversion of tetrahydrofolate cofactors to dihydrofolate is strongly influenced by residual dihydrofolate reductase catalytic activity. Exposure of cells to 0.1 microM trimetrexate results in only approximately 60% of maximum dihydrofolate levels achieved when dihydrofolate reductase activity is abolished. Network thermodynamic simulations predict, and experiments verify, that inhibition of thymidylate synthase at the 5,10-methylenetetrahydrofolate site by PD130883, when dihydrofolate reductase is only partially suppressed (approximately 85%) with 0.1 microM trimetrexate, substantially decreases (31-47%) the net level of interconversion of tetrahydrofolate cofactors to dihydrofolate. Further computer simulations predict that under conditions in which residual dihydrofolate reductase activity persists within the cells (more than about 5%), feedback inhibitory effects of dihydrofolate polyglutamates as well as other weak inhibitors of thymidylate synthase can significantly limit the extent of net interconversion of tetrahydrofolate cofactors to dihydrofolate and produce an apparent "compartmentation phenomenon" in which tetrahydrofolate cofactor pools are preserved within the cell in the presence of antifolates. Residual dihydrofolate reductase activity cannot, however, account for the partial interconversion of tetrahydrofolate cofactors to dihydrofolate after exposure to high trimetrexate or methotrexate levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

4.
Aurora B kinase is essential in the process of mitosis, and its overexpression has been reported to be associated with a number of solid tumors. We therefore carried out molecular docking, molecular dynamics, and molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations on several structurally diverse inhibitors (pentacyclic, pyrimidine, quinazoline, and pyrrolopyridine derivatives) and Aurora B kinase to explore the structural and chemical features responsible for the binding recognition mechanism. Molecular simulations reveal that the binding site mainly consists of six binding regions (sites A-F). We have identified that sites B and C are required for optimum binding in Aurora B-inhibitor complexes, sites A and F are needed to improve pharmacokinetic properties, while sites D and E lead to enhanced stability. We verified that hydrogen bonding to the hinge region and hydrophobic contact with the conserved hydrophobic pocket are of critical importance in the systems studied. Specifically, the amino acids Glu171, Phe172, and Ala173 in the hinge region and Leu99, Val107, and Leu223 in the conserved hydrophobic pocket probably account for the high binding affinities of these systems, as shown by hydrogen-bonding analysis and energy decomposition analysis. Hydrophobic contact with Phe172 is also in agreement with experimental data. In addition, the MM-PBSA calculations reveal that the binding of these inhibitors to Aurora B kinase is mainly driven by van der Waals/nonpolar interactions. The findings of this study should help to elucidate the binding pattern of Aurora B inhibitors and aid in the design of novel active ligands.  相似文献   

5.
JAK2 is an important target in multiple processes associated with tumor growth. In this study, virtual screening was employed for hit compound identification with chemical libraries using SurflexDock. Subsequently, hit optimization for potent and selective candidate JAK2 inhibitors was performed through synthesis of diverse C-1 substituted quinazoline derivatives. A novel compound 5p, (6,7-dimethoxyquinazolin-4-yl)naphthalen-1-ylamine, was thus obtained. JAK2 inhibitory activity of 5p was 43% at 20 ??M and this was comparable to AG490, a representative JAK2 inhibitor. Moreover, 5p showed a positive correlation between JAK2 inhibition and cytotoxicity; 5p treatment in HT-29 cells strongly inhibited JAK2 activation and subsequent STAT3 phosphorylation, reduced anti-apoptotic protein levels, and finally induced apoptosis. This suggests that compound 5p is a candidate inhibitor of JAK2 and its downstream STAT3 signaling pathway for antitumor therapy. In the docking model, the quinazoline template of 5k, the lead compound, occupied a hydrophobic region such as Leu856, Leu855, Ala880, Leu932 and Gly935, and the highly conserved hydrogen bond was created by 6-OMe of the ring template, which binds to the NH of Arg980. Moreover, hydrophobic interactions were identified between morpholine moiety and the hydrophobic region formed by Leu855, Ala880, Tyr931, Val911 and Met929. Also, compound 5k more strongly inhibited JAK2 phosphorylation in mouse embryonic stem cells than AG490. Our study shows the successful application of virtual screening for lead discovery and we propose that the novel compound 5p can be an effective JAK2 inhibitor candidate for further antitumor agent research.  相似文献   

6.
Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals.1, 2 Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2′-chlorophenyl with a sulfur bridge with a Ki of 8.83 ± 0.67 nM is discussed in terms of several Van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors.  相似文献   

7.
Thymidylate synthase (TS) is a well-recognized target for anticancer chemotherapy. Due to its key role in the sole de novo pathway for thymidylate synthesis and, hence, DNA synthesis, it is an essential enzyme in all life forms. As such, it has been recently recognized as a valuable new target against infectious diseases. There is also a pressing need for new antimicrobial agents that are able to target strains that are drug resistant toward currently used drugs. In this context, species specificity is of crucial importance to distinguish between the invading microorganism and the human host, yet thymidylate synthase is among the most highly conserved enzymes. We combine structure-based drug design with rapid synthetic techniques and mutagenesis, in an iterative fashion, to develop novel antifolates that are not derived from the substrate and cofactor, and to understand the molecular basis for the observed species specificity. The role of structural and computational studies in the discovery of nonanalog antifolate inhibitors of bacterial TS, naphthalein and dansyl derivatives, and in the understanding of their biological activity profile, are discussed.  相似文献   

8.
Betulinic acid (BA) is a naturally occurring pentacyclictriterpenoid possessing anti-retroviral, anti-cancer, and anti-inflammatory properties. Here, we studied the interaction of BA with human serum albumin (HSA) by using molecular docking, and molecular dynamic simulation methods. Molecular docking studies revealed that BA can bind in the large hydrophobic cavity of drug binding site I of sub-domain IIA and IIB, mainly by the hydrophobic interactions and also by hydrogen bond interactions. In which several cyclohexyl groups of BA are interacting with Phe(206), Arg(209), Ala(210), Ala(213), Leu(327), Gly(328), Leu(331), Ala(350), and Lys(351), residues of sub-domain IIA and IIB of HSA by hydrophobic interactions. Also, hydrogen bond interactions were observed between the hydroxyl (OH) group of BA with Phe(206) and Glu(354) of HSA, with hydrogen bond distances of 0.24 nm,0.28 nm respectively. Further, specifically, the molecular dynamics study makes an important contribution in understanding the effect of the binding of BA on conformational changes of HSA and the stability of the protein-drug complex system in aqueous solution. The root mean square deviation values of atoms in the free HSA molecule were calculated from 3000 ps to 5000 ps trajectory and the results were obtained as 0.72 ± 0.036 nm and 0.81 ± 0.032 nm for free HSA and HSA-BA, respectively. The radius of gyration (Rg) values of both unliganded HSA and HSA-BA were stabilized at 2.59 ± 0.03 nm, 2.51 ± 0.01 nm, respectively. Thus, this work may play an important role in the design of new BA inspired drugs with desired HSA binding affinity.  相似文献   

9.
Folate analogs that inhibit dihydrofolate reductase result in only partial interconversion of tetrahydrofolate cofactors to dihydrofolate with preservation of the major portion of reduced cellular folate cofactors in L1210 leukemia cells. One possible explanation for this phenomenon is that low levels of dihydrofolate polyglutamates that accumulate in the presence of antifolates block thymidylate synthase to prevent depletion of reduced folate pools. This paper correlates biochemical analyses of rapid interconversions of radiolabeled folates and changes in purine and pyrimidine biosynthesis in L1210 murine leukemia cells exposed to antifolates with network thermodynamic computer modeling to assess this hypothesis. When cells are exposed to 1 microM trimetrexate there is an almost instantaneous inhibition of [3H] deoxyuridine or [14C]formate incorporation into nucleotides which is maximal within 5 min. This is associated with a rapid rise in cellular dihydrofolate (t1/2 approximately 1.5 min), which reaches a steady state that represents only 27.9% of the total folate pool. Pretreatment of cells with fluorodeoxyuridine, to inhibit thymidylate synthase by about 95% followed by trimetrexate only slows the rate of folate interconversion (t1/2 approximately 25 min) but not the final dihydrofolate level achieved. This is consistent with computer simulations which predict that direct inhibition of thymidylate synthase by 97, 98, and 99% should increase the half-time of dihydrofolate rise after trimetrexate to 40, 60, and 124 min, respectively, but the final level achieved is always the same as in cells with normal thymidylate synthase activity. The data reflect the high degree of catalytic activity of thymidylate synthase relative to tetrahydrofolate cofactor pools in the cells and the enormous extent of inhibition of this enzyme that is necessary to slow the rate of folate interconversions after addition of antifolates. The model predicts, and the data demonstrate, that virtually any residual thymidylate synthase activity will permit the interconversion of all tetrahydrofolate cofactors available for oxidation to dihydrofolate when dihydrofolate reductase activity is abolished, but the rate of interconversion will be slowed. Additional simulations indicate that the time course of cessation of tetrahydrofolate-dependent purine and pyrimidine biosynthesis after antifolates in these cells can be accounted for solely on the basis of tetrahydrofolate cofactor depletion alone. These data exclude the possibility that direct inhibition of thymidylate synthase by dihydrofolate polyglutamates, or any other intracellular folates that accumulate in cells after antifolates, can account for the rapid but partial interconversion of reduced folate cofactors to dihydrofolate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Exposure of growing cultures of hepatoma cells in vitro to the lipid-soluble dihydrofolate reductase inhibitors metoprine (36 nM) or trimetrexate (2 nM) at subtoxic concentrations causes little change in cell growth rate, colony forming ability, cell cycle distribution, and de novo purine and thymidylate biosynthesis. The reductase inhibitors augment the cytotoxic activity of the thymidylate synthase inhibitor, 10-propargyl-5,8-dideazafolate by nearly 10-fold under optimal conditions. Treatment of the hepatoma cells with the reductase inhibitors for 72 h during growth caused approximately a 75% reduction in total cellular folates and 5,10-methylenetetrahydrofolate (primarily as polyglutamates) the substrate for thymidylate synthase. The reductase inhibitors also cause a doubling in the accumulation of 10-propargyl-5,8-dideazafolate polyglutamates. The combined antifolate treatment (metoprine or trimetrexate plus 10-propargyl-5,8-dideazafolate) expands the dUMP pool by 30-fold, which is more than the sum of either of the antifolates alone. Consequently, it is postulated that the enhanced activity of 10-propargyl-5,8-dideazafolate in combination with low concentrations of dihydrofolate reductase inhibitors is due to an increase in the ratio of inhibitor to substrate for thymidylate synthase of nearly 10-fold and an extensive enhancement of the dUMP pool. These conditions predispose the target enzyme and the cells to more effective metabolic blockade by 10-propargyl-5,8-dideazafolate which is presumably caused by the formation of an inhibited 10-propargyl-5,8-dideazafolate[polyglutamate]-thymidylate synthase-dUMP ternary complex.  相似文献   

11.
Li S  Zhang J  Cao S  Han R  Yuan Y  Yang J  Yan Y  Liu D 《Biotechnology letters》2011,33(10):2005-2011
Sterol 14α-demethylase from Penicillium digitatum (PdCYP51) is a prime target of antifungal drugs for citrus disease in plants. To design novel antifungal compounds, a homology model of PdCYP51 was constructed using the recently reported crystal structure of human CYP51 as the template. Molecular docking was performed to investigate the interaction of four commercial fungicides with the modeled enzyme. The side chain of these compounds interplayed with PdCYP51 mainly through hydrophobic and van der Waals interactions. Biochemical spectra analysis of inhibitors combined with PdCYP51 are also compatible with the docking results. This is the first molecular modeling for PdCYP51 based on the eukaryotic crystal structure of CYP51. The structural information and binding site mapping of PdCYP51 for different inhibitors obtained from this study could aid in screening and designing new antifungal compounds targeting this enzyme.  相似文献   

12.
Aromatase is an important pharmacological target in the anti-cancer therapy as the intratumoral aromatase is the source of local estrogen production in breast cancer tissues. Suppression of estrogen biosynthesis by aromatase inhibition represents an effective approach for the treatment of hormone-sensitive breast cancer. Because of the membrane-bound character and heme-binding instability, no crystal structure of aromatase was reported for a long time, until recently when crystal structure of human placental aromatase cytochrome P450 in complex with androstenedione was deposited in PDB. The present study is towards understanding the structural and functional characteristics of aromatase to address unsolved mysteries about this enzyme and elucidate the exact mode of binding of aromatase inhibitors. We have performed molecular docking simulation with twelve different inhibitors (ligands), which includes four FDA approved drugs; two flavonoids; three herbal compounds and three compounds having biphenyl motif with known IC(50) values into the active site of the human aromatase enzyme. All ligands showed favorable interactions and most of them seemed to interact to hydrophobic amino acids Ile133, Phe134, Phe221, Trp224, Ala306, Val370, Val373, Met374 and Leu477 and hydrophilic Arg115 and neutral Thr310 residues. The elucidation of the actual structure-function relationship of aromatase and the exact binding mode described in this study will be of significant interest as its inhibitors have shown great promise in fighting breast cancer.  相似文献   

13.
Molecular docking is routinely used for understanding drug‐receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literature to DHFR and studied their specific interactions with DHFR. A new shape-based method, LigandFit, was used for docking DMDP derivatives into DHFR active sites. The result indicates that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.499) for the 73 compounds between docking score and IC50 values (Inhibitory Activity). The chloro substituted naphthyl ring of compound 63 makes significant hydrophobic contact with Leu 22, Phe 31 and Pro 61 of the DHFR active site leading to enhanced inhibition of the enzyme. The docked complexes provide better insights to design more potent DHFR inhibitors prior to their synthesis.  相似文献   

14.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with alpha-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-gamma-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-gamma-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.  相似文献   

15.
Abstract

Lysine-specific demethylase (LSD1) is an important enzyme for histone lysine methylation. Downregulated LSD1 expression has been linked to cancer proliferation, migration and invasion, indicating that it is an important target for anti-cancer medication. In the present study, the binding modes of a recent reported new series of LSD1 inhibitor were analyzed by using molecular docking and molecular dynamics simulations. A binding mode of these inhibitors was proposed based on the results. According to this binding mode, Thr628 can form two important hydrogen bonds with these inhibitors. Moreover, if the inhibitors can form an additional hydrogen bond with hydroxyl group of Ser289, the potency of the inhibitor can be greatly improved, such as the best inhibitor (compound 12d) in this series. Hydrophobic interactions between the inhibitors and LSD1 are also key contributor here, such as the interaction between the hydrophobic groups (benzene rings) of the inhibitors and the hydrophobic residues of LSD1 (including Val288, Val317, Val811, Ala814, Leu659, Trp751 and Tyr761). Based on the results and analysis, it may provide some useful information for future novel LSD1 inhibitor design.  相似文献   

16.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   

17.
Abstract

Aromatase is an important pharmacological target in the anti-cancer therapy as the intratumoral aromatase is the source of local estrogen production in breast cancer tissues. Suppression of estrogen biosynthesis by aromatase inhibition represents an effective approach for the treatment of hormone-sensitive breast cancer. Because of the membrane-bound character and heme-binding instability, no crystal structure of aromatase was reported for a long time, until recently when crystal structure of human placental aromatase cytochrome P450 in complex with androstenedione was deposited in PDB. The present study is towards understanding the structural and functional characteristics of aromatase to address unsolved mysteries about this enzyme and elucidate the exact mode of binding of aromatase inhibitors. We have performed molecular docking simulation with twelve different inhibitors (ligands), which includes four FDA approved drugs; two flavonoids; three herbal compounds and three compounds having biphenyl motif with known IC50 values into the active site of the human aromatase enzyme. All ligands showed favorable interactions and most of them seemed to interact to hydrophobic amino acids Ile133, Phe134, Phe221, Trp224, Ala306, Val370, Val373, Met374 and Leu477 and hydrophilic Arg115 and neutral Thr310 residues. The elucidation of the actual structure-function relationship of aromatase and the exact binding mode described in this study will be of significant interest as its inhibitors have shown great promise in fighting breast cancer.  相似文献   

18.
丹参在治疗心绞痛、冠心病和心肌梗死等疾病中具有广泛应用。CYP76AH3是其活性成分丹参酮合成途径中的关键P450酶,位于丹参酮复杂合成网络通路的分支处,其晶体结构解析及关键氨基酸分析对丹参酮的合成生物学具有重要意义。作为跨膜蛋白的Ⅱ型P450酶的蛋白质纯化、晶体培养和晶体结构解析的难度一贯较大。本研究通过构建原核表达重组质粒,纯化目的蛋白质,成功培养了CYP76AH3晶体,解析了晶体结构。根据CavityPlus分析确定对接范围,采用分子对接程序Discovery Studio筛选出与底物相互作用的关键氨基酸,包括与底物有氢键相互作用的Gly298和Asp294,以及与底物有疏水相互作用的Phe479、Leu367和Leu293;通过点突变模拟进一步预测了关键氨基酸的突变对蛋白质结构稳定性的影响。本研究将为CYP76AH3的蛋白质工程提供目标,为丹参酮的合成生物学研究奠定了基础。  相似文献   

19.
Schizophrenia is a mental illness; most affected people live in developing countries, and neither appropriate treatment nor commercial drugs are currently available. One possibility is to inhibit human-d-amino acid oxidase (h-DAAO). In this study, molecular dynamic simulations of the monomer, dimer and tetramer forms of h-DAAO complexed with the inhibitor 3-hydroxyquinolin-2(1H)-one(2) were performed. Seven residues, Leu51, Gln53, Leu215, Tyr228, Ile230, Arg283 and Gly313, were identified as essential for interacting with the inhibitor. Molecular docking of h-DAAO with pyrrole, quinoline and kojic acid derivatives, representing 69 known or potential h-DAAO inhibitors, was also performed. The results indicated that the activity of the inhibitor can be improved by modifying the compounds to have a substituent group capable of interacting with the side chain of Tyr228. Van der Waals interactions of the inhibitor with the hydrophobic pocket of h-DAAO and electrostatic interactions or H-bonds with Arg283 and Gly313 were important elements in determining the efficiency of the inhibitor. These results provide information on the interaction between h-DAAO and its inhibitors at the molecular level and can aid in the design of novel inhibitors against h-DAAO for new drug development in the treatment of schizophrenia.  相似文献   

20.
Winged bean chymotrypsin inhibitor (WCI) has an intruding residue Asn14 that plays a crucial role in stabilizing the reactive site loop conformation. This residue is found to be conserved in the Kunitz (STI) family of serine protease inhibitors. To understand the contribution of this scaffolding residue on the stability of the reactive site loop, it was mutated in silico to Gly, Ala, Ser, Thr, Leu and Val and molecular dynamics (MD) simulations were carried out on the mutants. The results of MD simulations reveal the conformational variability and range of motions possible for the reactive site loop of different mutants. The N-terminus side of the scissile bond, which is close to a beta-barrel, is conformationally less variable, while the C-terminus side, which is relatively far from any such secondary structural element, is more variable and needs stability through hydrogen-bonding interactions. The simulated structures of WCI and the mutants were docked in the peptide-binding groove of the cognate enzyme chymotrypsin and the ability to form standard hydrogen-bonding interactions at P3, P1 and P2' residues were compared. The results of the MD simulations coupled with docking studies indicate that hydrophobic residues like Leu and Val at the 14th position are disruptive for the integrity of the reactive site loop, whereas a residue like Thr, which can stabilize the C-terminus side of the scissile bond, can be predicted at this position. However, the size and charge of the Asn residue made it most suitable for the best maintenance of the integrity of the reactive site loop, explaining its conserved nature in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号