首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fascin homologue 1 (FSCN1) has established roles in cell adhesion, motility, and cell–cell interactions. Our LongSAGE analysis suggested that FSCN1 was potentially differentially expressed in prenatal pig skeletal muscle. We have cloned the genomic DNA and mRNA sequence of FSCN1 gene and mapped it to SSC3p16-p17. The FSCN1 gene was differently expressed during prenatal skeletal muscle development and exhibited different expression pattern between Tongcheng and Landrace pigs. In Tongcheng pigs, FSCN1 expression was similar at 33 and 65 days post conception (dpc), and then sharply increased to a peak at 90 dpc. In Landrace pigs, however, expression increased between 33 and 65 dpc, peaked at 65 dpc, and was down-regulated thereafter. Significantly different expression levels between Tongcheng and Landrace were observed at 65 and 90 dpc. In postnatal pigs, it was strongly expressed only in the brain, but weakly in skeletal muscle and other tissues. We initially identified 32 SNPs through genomic DNA of FSCN1 gene. Association analysis suggested that the 6840C/T mutation was significantly associated with the age at market weight (AGE) (p = 0.0004), average day gain from birth to market (ADG1) (p = 0.0002), and average day gain at testing period (ADG2) (p < 0.0001). Our study suggested that FSCN1 gene plays an in prenatal skeletal muscle development and was a candidate gene for meat production trait.  相似文献   

2.
Myogenin regulates a distinct genetic program in adult muscle stem cells   总被引:1,自引:0,他引:1  
In contrast to the detailed understanding we have for the regulation of skeletal muscle gene expression in embryos, similar insights into postnatal muscle growth and regeneration are largely inferential or do not directly address gene regulatory mechanisms. Muscle stem cells (satellite cells) are chiefly responsible for providing new muscle during postnatal and adult life. The purpose of this study was to determine the role that the myogenic basic helix-loop-helix regulatory factor myogenin has in postnatal muscle growth and adult muscle stem cell gene expression. We found that myogenin is absolutely required for skeletal muscle development and survival until birth, but it is dispensable for postnatal life. However, Myog deletion after birth led to reduced body size implying a role for myogenin in regulating body homeostasis. Despite a lack of skeletal muscle defects in Myog-deleted mice during postnatal life and the efficient differentiation of cultured Myog-deleted adult muscle stem cells, the loss of myogenin profoundly altered the pattern of gene expression in cultured muscle stem cells and adult skeletal muscle. Remarkably, these changes in gene expression were distinct from those found in Myog-null embryonic skeletal muscle, indicating that myogenin has separate functions during postnatal life.  相似文献   

3.
Myotrophin (MTPN) is an effective growth factor in promoting skeletal muscle growth in vitro and vivo and has been purified from porcine skeletal muscle. However, in pigs, the information on MTPN gene is very limited. In this study, we cloned cDNA sequences and analyzed the genomic structure of porcine MTPN gene. The deduced amino acid sequence of porcine MTPN contains two the ankyrin repeat domains. RT-PCR analysis revealed that porcine MTPN gene was widely expressed in many tissues, a high expression level was observed in the spleen, liver and uterus, and transient transfection indicated that porcine MTPN proteins was located in cytoplasms within Pig Kidney Epithelial cells (PK15). Quantitative real-time PCR (qRT-PCR) analyses showed that MTPN expression peaked at embryonic 65 day post conception (dpc). During postnatal muscle development, MTPN expression was down-regulated from the 3 day to the 180 day in Yorkshire pigs. This result suggests that the MTPN gene may be important gene for skeletal muscle growth and provides useful information for further studies on its roles in porcine skeletal muscle.  相似文献   

4.
5.
Molecular characterization and association analysis of porcine CA3   总被引:1,自引:0,他引:1  
Carbonic anhydrase 3 (CA3) is a member of the carbonic anhydrase family, which plays an important role in various cell processes. In this paper, molecular characterization revealed that CA3 genomic DNA consists of seven exons and six introns, spans about 10.5 kb and maps to porcine chromosome 4q11-->q14. Results of expression profiles showed that the expression levels of CA3 increased in skeletal muscles from prenatal 33- to 65-day-old Chinese Tongcheng pigs. These levels subsequently decreased to a steady state in prenatal 90-day-old, postnatal 2-day-old, postnatal 28-day-old, and pregnant 65-day-old pigs. The expression patterns of Chinese Tongcheng pig embryos were different from that of Landrace pig embryos. CA3 was expressed at higher levels in skeletal muscle and liver than in kidney, lung, stomach, intestine, and brain, but was not detected in heart and spleen. Statistical analysis showed the CA3 gene polymorphism was different between Chinese indigenous and introduced commercial western pig breeds, and was associated with intramuscular fat content and percentage of ham of pigs.  相似文献   

6.
7.
8.
9.
10.
11.
The influence of maternal and formula milk on lipid metabolism was studied in 7-day-old pigs. Lipid content, fatty acid composition, lipogenic enzyme activities and expression of GLUT4 mRNA were determined in subcutaneous adipose tissue and skeletal muscle from pigs that were bottle-fed formula milk (F) or sow milk (SM), or were sow-reared (SR). Bottle-fed pigs were isoenergetically fed and achieved similar daily body weight gain. SR pigs have a higher (P < 0.05) body weight gain than bottle-fed pigs. Lipid content of adipose tissue was lower (P < 0.05) in F than in SM and SR pigs. In muscle, lipid content did not differ significantly between groups. In adipose tissue, acetyl-CoA-carboxylase (CBX), fatty acid synthase (FAS), malic enzyme (ME), glucose-6-phosphate-dehydrogenase (G6PDH) and lipoprotein lipase (LPL) activities and GLUT4 mRNA levels were higher (P < 0.05) in SR than in bottle-fed pigs. In muscle, ME and G6PDH activities and GLUT4 mRNA were higher (P < 0.05) in F than in SM and SR pigs; LPL was not detected. The present study indicates that lipogenic enzyme activities and GLUT4 mRNA expression are regulated differently in subcutaneous adipose tissue and skeletal muscle in the neonatal pig.  相似文献   

12.
Imprinted genes are expressed monoallelically depending on their parental origin, and play important roles in embryo survival and postnatal growth regulation. In this study, we characterized the porcine NECD (necdin), SNRPN (small nuclear ribonucleoprotein polypeptide N) and UBE3A (UBE3A ubiquitin protein ligase E3A) genes, analyzed their expression in nine tissues including liver, lung, small intestine, skeletal muscle, heart, kidney, spleen, inguinal lymph nodes and fat, and also examined their imprinting status in the skeletal muscle of neonate pigs. Results indicated that these three genes were highly homologous between pigs and cattle, being 95.02?% in nucleotide and 99.17?% in amino acid with the cattle SNRPN gene, and 96.46?% in nucleotide and 98.63?% in amino acid with the cattle UBE3A gene, respectively. The three genes were expressed in all the tissues investigated. Three single nucleotide polymorphisms (SNPs) in the coding region of these genes, i.e. g.263G>C, g.402T>C and g.340A>G for porcine NECD, SNRPN and UBE3A genes, respectively, were revealed; and imprinting analysis with which indicated that, in the skeletal muscle of neonate pigs, both NECD and SNRPN were maternally imprinted, while UBE3A was not imprinted.  相似文献   

13.
14.
15.

Background

Intrauterine growth-restricted (IUGR) neonates impair postnatal skeletal muscle growth. The aim of this study was to investigate whether high nutrient intake (HNI) during the suckling period could improve muscle growth and metabolic status of IUGR pigs.

Methods

Twelve pairs of IUGR and normal birth weight (NBW) pigs (7 days old) were randomly assigned to adequate nutrient intake and HNI formula milk groups. Psoas major (PM) muscle sample was obtained after 21 days of rearing.

Results

IUGR decreased cross-sectional areas (CSA) and myofiber numbers, activity of lactate dehydrogenase (LDH), and mRNA expression of insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), mammalian target of rapamycin (mTOR), ribosomal protein s6 (RPS6), eukaryotic translation initiation factor 4E (eIF4E), protein expression of phosphorylated mTOR (P-mTOR), and phosphorylated protein kinase B (P-Akt) in the PM muscle of pigs. Irrespective of birth weight, HNI increased muscle weight and CSA, the concentration of RNA, and ratio of RNA to DNA, as well as ratio of LDH to β-hydroxy-acyl-CoA-dehydrogenase in the PM muscle of pigs. Furthermore, HNI increased percentages of MyHC IIb, mRNA expression of IGF-1, IGF-1R, Akt, mTOR, RPS6, and eIF4E, as well as protein expression of P-mTOR, P-Akt, P-RPS6, and P-eIF4E in the PM muscle of pigs.

Conclusion

The present findings suggest that high nutrient intake during the suckling period could improve skeletal muscle growth and maturity, which is associated with increasing the expression of protein deposition-related genes and accelerating the development of glycolytic-type myofiber in pigs.
  相似文献   

16.
17.
Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity.  相似文献   

18.
PW1 is a mediator of p53 and TNFalpha signaling pathways previously identified in a screen to isolate muscle stem cell regulators. We generated transgenic mice carrying a C-terminal deleted form of PW1 (DeltaPW1) which blocks p53-mediated cell death and TNFalpha-mediated NFkappaB activation fused to the myogenin promoter. Embryonic/fetal muscle development appears normal during transgene expression, however, postnatal transgenic pups display severe phenotypes including runtism, reduced muscle mass and fiber diameters resembling atrophy. Atrogin-1, a marker of skeletal muscle atrophy, is expressed postnatally in transgenic mice. Electron microscopic analyses of transgenic muscle reveal a marked decrease in quiescent muscle satellite cells suggesting a deregulation of postnatal stem cells. Furthermore, transgenic primary myoblasts show a resistance to the effects of TNFalpha upon differentiation. Taken together, our data support a role for PW1 and related stress pathways in mediating skeletal muscle stem cell behavior which in turn is critical for postnatal muscle growth and homeostasis. In addition, these data reveal that postnatal stem cell behavior is likely specified during early muscle development.  相似文献   

19.
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.  相似文献   

20.
Tang Z  Li Y  Wan P  Li X  Zhao S  Liu B  Fan B  Zhu M  Yu M  Li K 《Genome biology》2007,8(6):R115

Background  

Obese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号