首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Asymptomatic infection due to Bordetella pertussis has been suggested to be one cause of sudden infant death syndrome (SIDS). We examined developmental and environmental factors previously found to affect binding of another toxigenic species, Staphylococcus aureus , to human epithelial cells: expression of the Lewisa antigen; infection with respiratory syncytial virus (RSV); exposure to cigarette smoke; and the inhibitory effect of breast milk on bacterial binding. Binding of two strains of B. pertussis (8002 and 250825) to buccal epithelial cells was significantly reduced by treating the cells with monoclonal antibodies to Lewisa ( P < 0.05) and Lewisx ( P < 0.01) antigens. Both strains bound in significantly greater numbers to cells from smokers compared with cells from non-smokers ( P < 0.05). HEp-2 cells infected with RSV subtypes A or B had higher binding indices for both 8002 ( P < 0.001) and 250825 ( P < 0.01). On RSV-infected cells, there was significantly enhanced binding of monoclonal antibodies to Lewisx ( P < 0.05), CD14 ( P < 0.001) and CD18 ( P < 0.01); and pre-treatment of cells with anti-CD14 or CD18 also significantly reduced binding of both strains of B. pertussis . Pre-treatment of the bacteria with human milk significantly reduced their binding to epithelial cells. The results are discussed in relation to our three-year survey of bacterial carriage among 253 healthy infants, their mothers and local SIDS cases between 1993–1995 and in relation to the change to an earlier immunisation schedule for infants and the recent decline in SIDS in Britain.  相似文献   

2.
Epidemiological studies indicate influenza virus infection increases susceptibility to bacterial respiratory pathogens and to meningococcal disease. Because density of colonisation is an important factor in the development of bacterial disease, the objectives of the study were to use flow cytometry methods for assessment of bacterial binding and detection of cell surface antigens to determine: (1) if HEp-2 cells infected with human influenza A virus bind greater numbers of bacteria than uninfected cells; (2) if influenza infection alters expression of cell surface antigens which act as receptors for bacterial binding; (3) if neuraminidase affects binding of bacteria to HEp-2 cells. There was significantly increased binding of all isolates tested regardless of surface antigen characteristics. There were no significant differences between virus-infected and -uninfected Hep-2 cells in binding of monoclonal antibodies to Lewisb, Lewisx or H type 2. There were significant increases in binding of monoclonal antibodies to CD14 (P < 0.05) and CD18 (P < 0.01). Treatment of cells with monoclonal antibodies significantly reduced binding of Neisseria meningitidis strain C:2b:P1.2, CD14 (P < 0.001) and CD18 (P < 0.001). No reduction in binding of a strain of Streptococcus pneumoniae (12F) was observed in these experiments. Neuraminidase treatment of HEp-2 cells increased binding of monoclonal antibodies to CD14 (P < 0.01) and CD18 (P < 0.01). In three experiments, the increase in binding of meningococcal strain C:2b:P1.2 to neuraminidase-treated cells was not significant, but binding of Staphylococcus aureus strain NCTC 10655 was significant (P < 0.05).  相似文献   

3.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

4.
Abstract Viral glycoproteins G and F are expressed on the surface of cells infected with respiratory syncytial virus (RSV). We investigated the role of these proteins in the previously reported enhanced binding of Neisseria meningitidis to RSV-infected HEp-2 cells. Virus particles attached to bacteria were detected by immunofluorescence with flow cytometry. Binding of FITC-labelled bacteria to RSV-infected cells was significantly inhibited by monoclonal antibody against glycoprotein G. Unlabelled bacteria interfered with binding of the anti-G monoclonal antibody to these cells. These interactions were not found with a monoclonal antibody against glycoprotein F. We propose that glycoprotein G of RSV expressed on the surface of infected cells might act as an additional receptor for meningococci.  相似文献   

5.
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.  相似文献   

6.
Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known receptors for these bacteria. All viruses enhanced bacterial adhesion to primary and immortalized cell lines. RSV and HPIV-3 infection increased the expression of several known receptors for pathogenic bacteria by primary bronchial epithelial cells and A549 cells but not by primary small airway epithelial cells. Influenza virus infection did not alter receptor expression. Paramyxoviruses augmented bacterial adherence to primary bronchial epithelial cells and immortalized cell lines by up-regulating eukaryotic cell receptors for these pathogens, whereas this mechanism was less significant in primary small airway epithelial cells and in influenza virus infections. Respiratory viruses promote bacterial adhesion to respiratory epithelial cells, a process that may increase bacterial colonization and contribute to disease. These studies highlight the distinct responses of different cell types to viral infection and the need to consider this variation when interpreting studies of the interactions between respiratory cells and viral pathogens.  相似文献   

7.
8.
To study the adhesion of meningococci under the conditions of a monoinfection and mixed infection (in association with influenza virus), the experimental model of mixed influenzal and meningococcal infection has been created in the culture of epithelial cells HEp-2. On this model in increase in the intensity of the adhesion of meningococci to eukaryotic cells, as well as in the intensity of the meningococcal colonization of such cells, after their preliminary infection with influenza virus has been observed. The study has revealed that in mixed infection the adsorption of extracellular virions onto the surface of bacteria occurs. During this adsorption viral processes directly interact with the microcapsule of the meningococcus.  相似文献   

9.
Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein’s CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma.  相似文献   

10.
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells, causing bronchiolitis, upper respiratory infections, asthma exacerbations, chronic obstructive pulmonary disease exacerbations, and pneumonia in immunocompromised hosts. A replication intermediate of RSV is dsRNA. This is an important ligand for both the innate immune receptor, TLR3, and protein kinase R (PKR). One known effect of RSV infection is the increased responsiveness of airway epithelial cells to subsequent bacterial ligands (i.e., LPS). In this study, we examined a possible role for RSV infection in increasing amounts and responsiveness of another TLR, TLR3. These studies demonstrate that RSV infection of A549 and human tracheobronchial epithelial cells increases the amounts of TLR3 and PKR in a time-dependent manner. This leads to increased NF-kappaB activity and production of the inflammatory cytokine IL-8 following a later exposure to dsRNA. Importantly, TLR3 was not detected on the cell surface at baseline but was detected on the cell surface after RSV infection. The data demonstrate that RSV, via an effect on TLR3 and PKR, sensitizes airway epithelial cells to subsequent dsRNA exposure. These findings are consistent with the hypothesis that RSV infection sensitizes the airway epithelium to subsequent viral and bacterial exposures by up-regulating TLRs and increasing their membrane localization.  相似文献   

11.
Respiratory syncytial virus (RSV), associated with bronchiolitis and asthma, is resistant to the antiviral effects of type-I interferons (IFN), but not IFN-gamma. However, the antiviral mechanism of IFN-gamma action against RSV infection is unknown. The molecular mechanism of IFN-gamma-induced antiviral activity was examined in this study using human epithelial cell lines HEp-2 and A549. Exposure of these cells to 100-1000 units/ml of IFN-gamma, either before or after RSV infection, results in a significant decrease in RSV infection. After 1 h of exposure, IFN-gamma induces protein expression of IFN regulatory factor-1 (IRF-1) but not IRF-2, double-stranded RNA-activated protein kinase, and inducible nitric-oxide synthase in these cells. The mRNA for IRF-1, p40, and p69 isoforms of 2'-5' oligoadenylate synthetase (2-5 AS) are detectable, respectively, at 1 and 4 h of IFN-gamma exposure. Studies using cycloheximide and antisense oligonucleotides to IRF-1 indicate a direct role of IRF-1 in activating 2-5 AS. Cells transfected with 2-5 AS antisense oligonucleotides inhibit the antiviral effect of IFN-gamma. A stable cell line of HEp-2 overexpressing RNase L inhibitor, RLI-14, which exhibits an IFN-gamma-induced gene expression pattern similar to that of the parent cell line, shows a significant reduction in RNase L activity and IFN-gamma-mediated antiviral effect, compared with HEp-2 cells. These results provide direct evidence of the involvement of 2-5 AS in IFN-gamma-mediated antiviral activity in these cells.  相似文献   

12.
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in infants and children. To study RSV replication, we have developed an in vitro model of human nasopharyngeal mucosa, human airway epithelium (HAE). RSV grows to moderate titers in HAE, though they are significantly lower than those in a continuous epithelial cell line, HEp-2. In HAE, RSV spreads over time to form focal collections of infected cells causing minimal cytopathic effect. Unlike HEp-2 cells, in which wild-type and live-attenuated vaccine candidate viruses grow equally well, the vaccine candidates exhibit growth in HAE that parallels their level of attenuation in children.  相似文献   

13.
Respiratory syncytial virus (RSV) is the most frequent cause of lower respiratory disease in infants, but no vaccine or effective therapy is available. The initiation of RSV infection of immortalized cells is largely dependent on cell surface heparan sulfate (HS), a receptor for the RSV attachment (G) glycoprotein in immortalized cells. However, RSV infects the ciliated cells in primary well differentiated human airway epithelial (HAE) cultures via the apical surface, but HS is not detectable on this surface. Here we show that soluble HS inhibits infection of immortalized cells, but not HAE cultures, confirming that HS is not the receptor on HAE cultures. Conversely, a “non-neutralizing” monoclonal antibody against the G protein that does not block RSV infection of immortalized cells, does inhibit infection of HAE cultures. This antibody was previously shown to block the interaction between the G protein and the chemokine receptor CX3CR1 and we have mapped the binding site for this antibody to the CX3C motif and its surrounding region in the G protein. We show that CX3CR1 is present on the apical surface of ciliated cells in HAE cultures and especially on the cilia. RSV infection of HAE cultures is reduced by an antibody against CX3CR1 and by mutations in the G protein CX3C motif. Additionally, mice lacking CX3CR1 are less susceptible to RSV infection. These findings demonstrate that RSV uses CX3CR1 as a cellular receptor on HAE cultures and highlight the importance of using a physiologically relevant model to study virus entry and antibody neutralization.  相似文献   

14.
15.
Respiratory syncytial virus (RSV) is a major cause of morbidity from respiratory infection in infants, young children and the elderly. No effective vaccine against RSV is currently available and studies of the natural history of RSV infection suggest repeated infections with antigenically related virus strains are common throughout an individual's lifetime. We have studied the CD8+ T-cell response during experimental murine RSV infection and found that RSV inhibits the expression of effector activity by activated RSV-specific CD8+ T cells infiltrating the lung parenchyma and the development of pulmonary CD8+ T-cell memory by interfering with TCR-mediated signaling. These data suggest a possible mechanism to explain the limited duration of protective immunity in RSV infection.  相似文献   

16.
17.
Respiratory syncytial virus (RSV) infection causes severe lower respiratory diseases in infancy, early childhood and the elderly. RSV infections respond poorly to current therapies. Therefore, we initiated a search for novel drug targets by investigating the characteristics and identity of RSV adhesion receptors on mammalian cells. Soluble human lectins, complex polysaccharides and a low molecular selectin antagonist, TBC1269, were used to characterise and isolate the RSV receptor on a human epithelial cell line (Hep2 cells). The binding characteristics of the RSV receptor on Hep2 cells were similar to those reported for L-selectin. The carbohydrate-based selectin antagonists, fucoidan and TBC 1269, inhibit RSV infection both in vitro and in a mouse model of infection. Furthermore, we have isolated annexin II as a potential RSV receptor on Hep2 cells. The expression of annexin II was increased after RSV infection. Recombinant annexin II binds to RSV G-protein, heparin and plasminogen and the binding is inhibited by a selectin antagonist, TBC1269. These findings indicate that inhibitors of annexin II could have potential in treating RSV infection.  相似文献   

18.
Respiratory syncytial virus (RSV) is worldwide the most frequent cause of bronchiolitis and pneumonia in infants requiring hospitalization. In the present study, we supply evidence that human lung microvascular endothelial cells, human pulmonary lung aorta endothelial cells, and HUVEC are target cells for productive RSV infection. All three RSV-infected endothelial cell types showed an enhanced cell surface expression of ICAM-1 (CD54), which increased in a time- and RSV-dose-dependent manner. By using noninfectious RSV particles we verified that replication of RSV is a prerequisite for the increase of ICAM-1 cell surface expression. The up-regulated ICAM-1 expression pattern correlated with an increased cellular ICAM-1 mRNA amount. In contrast to ICAM-1, a de novo expression of VCAM-1 (CD106) was only observed on RSV-infected HUVEC. Neither P-selectin (CD62P) nor E-selectin (CD62E) was up-regulated by RSV on human endothelial cells. Additional experiments performed with neutralizing Abs specific for IL-1alpha, IL-1beta, IL-6, and TNF-alpha, respectively, excluded an autocrine mechanism responsible for the observed ICAM-1 up-regulation. The virus-induced ICAM-1 up-regulation was dependent on protein kinase C and A, PI3K, and p38 MAPK activity. Adhesion experiments using polymorphonuclear neutrophil granulocytes (PMN) verified an increased ICAM-1-dependent adhesion rate of PMN cocultured with RSV-infected endothelial cells. Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of PMN. Our in vitro data suggest that human lung endothelial cells are target cells for RSV infection and that ICAM-1 up-regulated on RSV-infected endothelial cells might contribute to the enhanced accumulation of PMN into the bronchoalveolar space.  相似文献   

19.
Glycosaminoglycans (GAGs) on the surface of cultured cells are important in the first step of efficient respiratory syncytial virus (RSV) infection. We evaluated the importance of sulfation, the major biosynthetic modification of GAGs, using an improved recombinant green fluorescent protein-expressing RSV (rgRSV) to assay infection. Pretreatment of HEp-2 cells with 50 mM sodium chlorate, a selective inhibitor of sulfation, for 48 h prior to inoculation reduced the efficiency of rgRSV infection to 40%. Infection of a CHO mutant cell line deficient in N-sulfation was three times less efficient than infection of the parental CHO cell line, indicating that N-sulfation is important. In contrast, infection of a cell line deficient in 2-O-sulfation was as efficient as infection of the parental cell line, indicating that 2-O-sulfation is not required for RSV infection. Incubating RSV with the purified soluble heparin, the prototype GAG, before inoculation had previously been shown to neutralize its infectivity. Here we tested chemically modified heparin chains that lack their N-, C6-O-, or C2-O-sulfate groups. Only heparin chains lacking the N-sulfate group lost the ability to neutralize infection, confirming that N-sulfation, but not C6-O- or C2-O-sulfation, is important for RSV infection. Analysis of heparin fragments identified the 10-saccharide chain as the minimum size that can neutralize RSV infectivity. Taken together, these results show that, while sulfate modification is important for the ability of GAGs to mediate RSV infection, only certain sulfate groups are required. This specificity indicates that the role of cell surface GAGs in RSV infection is not based on a simple charge interaction between the virus and sulfate groups but instead involves a specific GAG structural configuration that includes N-sulfate and a minimum of 10 saccharide subunits. These elements, in addition to iduronic acid demonstrated previously (L. K. Hallak, P. L. Collins, W. Knudson, and M. E. Peeples, Virology 271:264-275, 2000), partially define cell surface molecules important for RSV infection of cultured cells.  相似文献   

20.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in children, the elderly, and immune-compromised individuals. CD4 and CD8 T cells play a crucial role in the elimination of RSV from the infected lung, but T cell memory is not sufficient to completely prevent reinfections. The nature of the adaptive immune response depends on innate immune reactions initiated after interaction of invading pathogens with host APCs. For respiratory pathogens myeloid dendritic cell (DC) precursors that are located underneath the epithelial cell layer lining the airways may play a crucial role in primary activation of T cells and regulating their functional potential. In this study, we investigated the role of human monocyte-derived DC in RSV infection. We showed that monocyte-derived DC can be productively infected, which results in maturation of the DC judged by the up-regulation of CD80, CD83, CD86, and HLA class II molecules. However, RSV infection of DC caused impaired CD4 T cell activation characterized by a lower T cell proliferation and ablation of cytokine production in activated T cells. The suppressive effect was caused by an as yet unidentified soluble factor produced by RSV-infected DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号