首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石油污染对土壤微生物群落多样性的影响   总被引:3,自引:0,他引:3  
土壤中的微生物主要有细菌、放线菌、真菌三大类群,微生物在石油污染的土壤中发挥着维持生态平衡和生物降解的功能。文中以四川省遂宁市射洪县某废弃油井周围不同程度石油污染土壤为供试土壤,首先对各组供试土壤的基本理化性质进行测定分析;然后采用平板菌落计数法测定了供试土壤中三大类微生物数量的变化,结果表明:相比未被污染的对照土壤,石油污染的土壤中细菌、放线菌、真菌数量均减少,并且土壤中可培养微生物的数量与土壤含水量呈正相关;再采用454焦磷酸测序技术对土壤中的细菌群落多样性及变化进行16S rRNA基因分析。在所有供试的4个土壤样品中,共鉴定出不少于23 982个有效读取序列和6 123种微生物,相比于未被污染的对照土壤,石油污染土壤中细菌的种类更加丰富,主要优势门类为酸杆菌门、放线菌门、拟杆菌门、绿弯菌门、浮霉菌门和变形菌门。但不同土壤样品中优势菌群的群落结构有所差异,石油污染的土壤中,酸杆菌门、放线菌门和变形菌门的数量最多,未被石油污染的土壤中,放线菌门、拟杆菌门和变形菌门的数量最多。  相似文献   

2.
Abstract

Rhizodegradation performed by plant roots and the associated bacteria is one of the major mechanisms that contribute to removal of petroleum hydrocarbons (PHCs) during phytoremediation. In this study, the pot-culture experiment using wild ornamental Hylotelephium spectabile (Boreau) H. Ohba was designed to explore responses and roles of roots, microbes, and degrading genes in the rhizodegradation process. Results showed that PHCs degradation rate by phytoremediation was up to 37.6–53.3% while phytoaccumulation accounted for a low proportion, just at 0.3–13.3%. A total of 37 phyla were classified through the high throughput sequencing, among which Proteobacteria, Actinobacteria, and Acidobacteria were the three most dominant phyla, accounting for >60% of the phylum frequency. The selective enrichment of PHC degraders with high salt-tolerance, including Alcanivorax and Bacteroidetes, was induced. Generally, relative abundance of the PHC degrading genes increased significantly with an increase in PHCs concentrations, and the gene copy number in the phytoremediation group was 1.46–14.44 times as much as that in the unplanted controls. Overall, the presence of PHCs and plant roots showed a stimulating effect on the development of specific degraders containing PHC degrading genes, and correspondingly, a biodegradation-beneficial community structure had been constructed to contribute to PHCs degradation in the rhizosphere.  相似文献   

3.
Although fungal communities are known to vary along latitudinal gradients, mechanisms underlying this pattern are not well‐understood. We used high‐throughput sequencing to examine the large‐scale distributions of soil fungi and their relation to evolutionary history. We tested the Tropical Conservatism Hypothesis, which predicts that ancestral fungal groups should be more restricted to tropical latitudes and conditions than would more recently derived groups. We found support for this hypothesis in that older phyla preferred significantly lower latitudes and warmer, wetter conditions than did younger phyla. Moreover, preferences for higher latitudes and lower precipitation levels were significantly phylogenetically conserved among the six younger phyla, possibly because the older phyla possess a zoospore stage that is vulnerable to drought, whereas the younger phyla retain protective cell walls throughout their life cycle. Our study provides novel evidence that the Tropical Conservatism Hypothesis applies to microbes as well as plants and animals.  相似文献   

4.
Maize represents one of the main cultivar for food and energy and crop yields are influenced by soil physicochemical and climatic conditions. To study how maize plants influence soil microbes we have examined microbial communities that colonize maize plants grown in carbonate‐rich soil (pH 8.5) using culture‐independent, PCR‐based methods. We observed a low proportion of unclassified bacteria in this soil whether it was planted or unplanted. Our results indicate that a higher complexity of the bacterial community is present in bulk soil with microbes from nine phyla, while in the rhizosphere microbes from only six phyla were found. The predominant microbes in bulk soil were bacteria of the phyla Acidobacteria, Bacteroidetes and Proteobacteria, while Gammaproteobacteria of the genera Pseudomonas and Lysobacter were the predominant in the rhizosphere. As Gammaproteobacteria respond chemotactically to exudates and are efficient in the utilization of plants exudate products, microbial communities associated to the rhizosphere seem to be plant‐driven. It should be noted that Gammaproteobacteria made available inorganic nutrients to the plants favouring plant growth and then the benefit of the interaction is common.  相似文献   

5.
Microbes, warfare, religion, and human institutions   总被引:1,自引:0,他引:1  
A significant number of practicing microbiologists are not aware of the historical impact of infectious agents on the development of human institutions. Microbes have played a profound role in warfare, religion, migration of populations, art, and in diplomacy. Boundaries of nations have changed as a result of microbial diseases. Infectious agents have terminated some kingdoms and elevated others. There is a need for microbiologists to have a historical perspective of some of the major ways in which a pathogen may influence civilized populations. Conditions may exist in contemporary society for a repeat of some of the kinds of plagues suffered by previous societies. The purpose of this paper is to review examples of situations where pathogenic microbes have forced societal modifications on centers of human population.  相似文献   

6.
Marine sponges and their microbial symbionts: love and other relationships   总被引:1,自引:0,他引:1  
Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention.  相似文献   

7.
8.
The deep terrestrial subsurface is a large and diverse microbial habitat and vast repository of biomass. However, in relation to its size and physical heterogeneity we have limited understanding of taxonomic and metabolic diversity in this realm. Here we present a detailed metagenomic analysis of samples from the Deep Mine Microbial Observatory (DeMMO) spanning depths from the surface to 1.5 km into the crust. From eight geochemically and spatially distinct fluid samples we reconstructed ~600 partial to near-complete metagenome-assembled genomes (MAGs), representing 50 distinct phyla and including 18 candidate phyla. These novel clades include members of the candidate phyla radiation, two new MAGs from OLB16, a phylum originally identified in DeMMO fluids and for which only one other MAG is currently available, and new MAGs from the Eisenbacteria, Omnitrophota, and Edwardsbacteria. We find that microbes spanning this expansive phylogenetic diversity and physical subsurface space gain a competitive edge by maintaining a wide variety of functional pathways, are often capable of numerous dissimilatory energy metabolisms and poised to take advantage of nutrients as they become available in isolated fracture fluids. Our results support and expand on emerging themes of tight nutrient cycling and genomic plasticity in deep subsurface biosphere taxa.  相似文献   

9.
There are many more phyla of microbes than of macro-organisms, but microbial biodiversity is poorly understood because most microbes are uncultured. Phylogenetic analysis of rDNA sequences cloned after PCR amplification of DNA extracted directly from environmental samples is a powerful way of exploring our degree of ignorance of major groups. As there are only five eukaryotic kingdoms, two claims using such methods for numerous novel 'kingdom-level' lineages among anaerobic eukaryotes would be remarkable, if true. By reanalysing those data with 167 known species (not merely 8-37), I identified relatives for all 8-10 'mysterious' lineages. All probably belong to one of five already recognized phyla (Amoebozoa, Cercozoa, Apusozoa, Myzozoa, Loukozoa) within the basal kingdom Protozoa, mostly in known classes, sometimes even in known orders, families or genera. This strengthens the idea that the ancestral eukaryote was a mitochondrial aerobe. Analogous claims of novel bacterial divisions or kingdoms may reflect the weak resolution and grossly non-clock-like evolution of ribosomal rRNA, not genuine phylum-level biological disparity. Critical interpretation of environmental DNA sequences suggests that our overall picture of microbial biodiversity at phylum or division level is already rather good and comprehensive and that there are no uncharacterized kingdoms of life. However, immense lower-level diversity remains to be mapped, as does the root of the tree of life.  相似文献   

10.
厚积薄发:我国植物-微生物互作研究取得突破   总被引:2,自引:2,他引:0  
毕国志  周俭民 《植物学报》2017,52(6):685-688
在自然环境中,植物与微生物紧密互作。病原微生物侵染植物,严重制约了农作物的生产,并威胁生态安全;有益的微生物则与植物形成了互惠互利的同盟关系,促进植物的健康生长。近年来,我国科学家在植物-微生物互作领域屡获突破,从整体上取得了长足进步。该文重点介绍了2017年我国科学家在国际顶级学术期刊上发表的4篇研究成果,并对本领域的发展进行了展望。  相似文献   

11.
Marine sponges are host to numerically vast and phylogenetically diverse bacterial communities, with 26 major phyla to date having been found in close association with sponge species worldwide. Analyses of these microbial communities have revealed many sponge-specific novel genera and species. These endosymbiotic microbes are believed to play significant roles in sponge physiology including the production of an array of bioactive secondary metabolites. Here, we report on the use of culture-based and culture-independent (pyrosequencing) techniques to elucidate the bacterial community profiles associated with the marine sponges Raspailia ramosa and Stelligera stuposa sampled from a single geographical location in Irish waters and with ambient seawater. To date, little is known about the microbial ecology of sponges of these genera. Culture isolation grossly underestimated sponge-associated bacterial diversity. Four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 isolates, compared with ten phyla found using pyrosequencing. Long average read lengths of ~430 bp (V1-V3 region of 16S rRNA gene) allowed for robust resolution of sequences to genus level. Bacterial OTUs (2,109 total), at 95% sequence similarity, from ten bacterial phyla were recovered from R. ramosa, 349 OTUs were identified in S. stuposa representing eight phyla, while 533 OTUs from six phyla were found in surrounding seawater. Bacterial communities differed significantly between sponge species and the seawater. Analysis of the data for sponge-specific taxa revealed that 2.8% of classified reads from the sponge R. ramosa can be defined as sponge-specific, while 26% of S. stuposa sequences represent sponge-specific bacteria. Novel sponge-specific clusters were identified, whereas the majority of previously reported sponge-specific clusters (e.g. Poribacteria) were absent from these sponge species. This deep and robust analysis provides further evidence that the microbial communities associated with marine sponge species are highly diverse and divergent from one another and appear to be host-selected through as yet unknown processes.  相似文献   

12.
Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world''s oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.  相似文献   

13.
The majority of current biotechnological applications are of microbial origin, and it is widely appreciated that the microbial world contains by far the greatest fraction of biodiversity in the biosphere. Because of their biotech impact, numerous efforts are being undertaken worldwide, with an ultimate goal to deliver new usable substances of microbial origin to the marketplace. However, the direct isolation of microbes always revealed that the majority are not amenable to be cultured and no representatives for many major microbial phyla have been thus far characterized. Therefore, the knowledge on new microbes and/or genomic information thereof, or from their communities, will pose an enormous potential to provide industry with novel products and processes based on the use of microbial resources, and contribute to and extend the basic mechanistic knowledge on the functioning of organisms. The present review highlights some examples and advances in the exploration of the genetic reservoir of (un)cultured microbes for industrial applications.  相似文献   

14.
The eggs of most oviparous animals are provisioned with a class of protein called vitellogenin (Vg) which is stored as the major component of yolk. Until recently, deduced amino acid sequences were available only from vertebrate and nematode Vgs, which proved to be homologous. The sequences of several insect Vgs are now known, but early attempts at pairwise alignments with vertebrate and nematode Vgs have been problematic, leading to conflicting conclusions about how closely insect Vgs are related to the others. In this paper we demonstrate that insect Vg sequences can be confidently aligned with one another along their entire lengths and with multiple vertebrate and nematode Vg sequences along most of their spans. Although divergence is high, conservation among insect, vertebrate, and nematode Vg sequences is widespread with a preponderance of glycine, proline, and cysteine residues among strictly conserved amino acids, establishing conclusively that Vgs from the three phyla are homologous. Areas of least-certain alignment are primarily in and around insect and vertebrate polyserine domains which are not homologous. Phylogenetic reconstructions of Vgs based on sequence identities indicate that the insect lineage is the most diverged and that the mammalian serum protein, apolipoprotein B-100, arose from a Vg ancestor after the nematode/vertebrate divergence. Received: 6 May 1996 / Accepted: 27 September 1996  相似文献   

15.
高通量测序分析云南腾冲热海热泉微生物多样性   总被引:3,自引:0,他引:3  
【背景】云南腾冲热海热泉中蕴含着丰富的极端微生物资源。【目的】揭示云南腾冲热海热泉中微生物物种多样性及群落结构差异,发掘酸性热泉中铁、硫氧化功能微生物。【方法】采用Illumina HiSeq高通量测序技术对3处热泉15个水体样品中微生物16SrRNA基因V4-V5区进行测序及生物信息学分析。【结果】3处热泉中共获得578061条有效序列,聚类为141个可操作分类单元(Operational taxonomic unit,OTU),包括19个门66个属。鼓鸣泉(GMQ)、蛤蟆嘴(HMZ)、黄瓜箐(HGQ)3处热泉均以泉古菌门(Crenarchaeota)和厚壁菌门(Firmicute)为主。从属水平分析,碱性热泉鼓鸣泉(GMQ)和中性热泉蛤蟆嘴(HMZ)分别注释到37、32个属,优势属均为芽孢杆菌属(Bacillus)和热棒菌属(Pyrobaculum)。酸性热泉黄瓜箐(HGQ)共注释到20个属,优势属为酸杆菌属(Acidibacillus)和酸硫杆状菌属(Acidithiobacillus),此外,具有铁、硫氧化潜力的菌属有喜酸菌属(Acidicaldus)、硫化芽孢杆菌属(Sulfobacillus)、硫化叶菌属(Sulfolobus)及生金球菌属(Metallosphaera)等,进一步通过硫氧化培养基分离获得了这些菌属中的纯菌株。【结论】云南腾冲热海热泉水体中蕴含丰富的微生物资源,热泉间微生物物种组成差异明显;酸性热泉中存在多种具有潜在铁、硫代谢功能的菌种;未分类类群、非培养类群丰度很高,尤其是蕴藏着可观的古菌资源。  相似文献   

16.
由于地理位置特殊和生态系统类型的复杂多样性,高原湿地在水源供给、温室气体调节、生物多样性保护等方面具有不可忽视的生态作用。纳帕海高原湿地是特殊的低纬度高海拔湿地类型,目前关于其微生物多样性的研究较少。文中基于宏基因组学方法对纳帕海高原湿地微生物的基因组进行测序,在细菌域中鉴定出184个门、3 262个属、24 260个种;在古菌域中检测到13个门、32个属;在真菌域中共有13个门、47个属。土壤和水体的物种多样性具有明显差异:在门水平上,土壤中酸杆菌门、变形菌门和放线菌门为优势菌门,水体则以变形菌门和拟杆菌门为主。通过宏基因组分析获得纳帕海微生物群落的多样性数据,并对高原湿地中固碳途径和氮代谢途径进行了初步分析。研究表明碳、氮代谢基因丰度较高,湿地微生物固碳途径主要以卡尔文循环、还原性三羧酸循环和3-羟基丙酸循环为主,变形菌门、绿弯菌门、泉古菌门为主要固碳菌群;对于氮循环,水中以固氮和异化硝酸盐还原过程为主,土壤则以硝化和反硝化过程为主,变形菌门、硝化螺旋菌门、疣微菌门、放线菌门、奇古菌门和广古菌门的微生物为氮循环的主要贡献者。本研究揭示的纳帕海高原湿地微生物多样性,为湿地环境的综合治理和保护提供了新的知识。  相似文献   

17.
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.  相似文献   

18.
Schirmacher Oasis, Antarctica, is a region with relatively large exposed area and consisted of many freshwater lakes. Nevertheless, only a few studies were done on the bacterial diversity of this region. Hence, this project was undertaken to determine the bacterial community in soil samples collected from the Schirmacher Oasis using the denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. A total of 79 partial 16S rDNA sequences were obtained from the excised DGGE bands, which corresponded to 63 different operational taxonomic units (OTUs) representing bacteria from seven different phyla. The most dominant phyla in descending order were Acidobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, Planctomycetes, Cyanobacteria and BRC1. There were 5.4 % of unclassified bacteria which cannot be grouped into any of the existing phyla. Eighty-seven percent of the OTUs had highest similarity with the uncultured bacteria from the NCBI GenBank database. Thirty-two percent of the OTUs were similar to bacteria reported in other parts of the Antarctica, while the others were related to bacteria found elsewhere outside the Antarctic.  相似文献   

19.
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.  相似文献   

20.
Samples of the sponge Haliclona simulans were collected from Irish waters and subjected to a culture-independent analysis to determine the microbial, polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) diversity. 16S rRNA gene libraries were prepared from total sponge, bacterial enriched sponge and seawater samples. Eight phyla from the Bacteria were detected in the sponge by phylogenetic analyses of the 16S rRNA gene libraries. The most abundant phylum in the total sponge library was the Proteobacteria (86%), with the majority of these clones being from the γ- Proteobacteria (77%); two groups of clones were dominant and together made up 69% of the total. Both of these groups were related to other sponge-derived microbes and comprised novel genera. Within the other bacterial phyla groups of clones representing novel candidate genera within the phyla Verrucomicrobia and Lentisphaerae were also found. Selective enrichment of the bacterial component of the sponge prior to 16S rRNA gene analysis resulted in a 16S rRNA gene library dominated by a novel genus of δ- Proteobacteria , most closely related to the Bdellovibrio . The potential for the sponge microbiota to produce secondary metabolites was also analysed by polymerase chain reaction amplification of PKS and NRPS genes. While no NRPS sequences were isolated seven ketosynthase (KS) sequences were obtained from the sponge metagenome. Analyses of these clones revealed a diverse collection of PKS sequences which were most closely affiliated with PKS from members of the Cyanobacteria , Myxobacteria and Dinoflagellata .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号