首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism.  相似文献   

2.
Oxygen is a major determinant of both survival and mortality of aerobic organisms. For the facultative anaerobe Lactococcus lactis, oxygen has negative effects on both growth and survival. We show here that oxygen can be beneficial to L. lactis if heme is present during aerated growth. The growth period is extended and long-term survival is markedly improved compared to results obtained under the usual fermentation conditions. We considered that improved growth and survival could be due to the capacity of L. lactis to undergo respiration. To test this idea, we confirmed that the metabolic behavior of lactococci in the presence of oxygen and hemin is consistent with respiration and is most pronounced late in growth. We then used a genetic approach to show the following. (i) The cydA gene, encoding cytochrome d oxidase, is required for respiration and plays a direct role in oxygen utilization. cydA expression is induced late in growth under respiration conditions. (ii) The hemZ gene, encoding ferrochelatase, which converts protoporphyrin IX to heme, is needed for respiration if the precursor, rather than the final heme product, is present in the medium. Surprisingly, survival improved by respiration is observed in a superoxide dismutase-deficient strain, a result which emphasizes the physiological differences between fermenting and respiring lactococci. These studies confirm respiratory metabolism in L. lactis and suggest that this organism may be better adapted to respiration than to traditional fermentative metabolism.  相似文献   

3.
In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO(3)(2-)), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn(2+)/Fe(2+) transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe(2+) uptake, suggesting that MntH is a Fe(2+) transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe(2+) can heighten tellurite and oxygen toxicity.  相似文献   

4.
Respiration capacity and consequences in Lactococcus lactis   总被引:3,自引:0,他引:3  
We recently reported that the well-studied fermenting bacterium Lactococcus lactis could grow via a respirative metabolism in the presence of oxygen when a heme source is present. Respiration induces profound changes in L. lactis metabolism, and improvement of oxygen tolerance and long-term survival. Compared to usual fermentation conditions, biomass is approximately doubled by the end of growth, acid production is reduced, and large amounts of normally minor end products accumulate. Lactococci grown via respiration survive markedly better after long-term storage than fermenting cells. We suggest that growth and survival of lactococci are optimal under respiration-permissive conditions, and not under fermentation conditions as previously supposed.Our results reveal the uniqueness of the L. lactis respiration model. The well-studied aerobic bacteria express multiple terminal cytochrome oxidases, which assure respiration all throughout growth; they also synthesize their own heme. In contrast, the L. lactis cydABgenes encode a single cytochrome oxidase (bd), and heme must be provided. Furthermore, cydAB genes mediate respiration only late in growth. Thus, lactococci exit the lag phase via fermentation even if heme is present, and start respiration in late exponential phase. Our results suggest that the spectacularly improved survival is in part due to reduced intracellular oxidation during respiration. We predict that lactococcal relatives like the Enterococci, and some Lactobacilli, which have reported respiration potential, will display improved survival under respiration-permissive conditions.  相似文献   

5.
6.
Group B Streptococcus (GBS) is a common constituent of the vaginal microflora, but its transmission to newborns can cause life-threatening sepsis, pneumonia and meningitis. Energy metabolism of this opportunist pathogen has been deduced to be strictly fermentative. We discovered that GBS undergoes respiration metabolism if its environment supplies two essential respiratory components: quinone and haem. Respiration metabolism led to significant changes in growth characteristics, including a doubling of biomass and an altered metabolite profile under the tested conditions. The GBS respiratory chain is inactivated by: (i) withdrawing haem and/or quinone, (ii) treating cultures with a respiration inhibitor or (iii) inactivating the cydA gene product, a subunit of cytochrome bd quinol oxidase, in all cases resulting in exclusively fermentative growth. cydA inactivation reduced GBS growth in human blood and strongly attenuated virulence in a neonatal rat sepsis model, suggesting that the animal host may supply the components that activate GBS respiration. These results suggest a role of respiration metabolism in GBS dissemination. Our findings show that environmental factors can increase the flexibility of GBS metabolism by activating a newly identified respiration chain. The need for two environmental factors may explain why GBS respiration metabolism was not found in previous studies.  相似文献   

7.
Quinones are essential components of the respiration chain that shuttle electrons between oxidoreductases. We characterized the quinones synthesized by Lactococcus lactis , a fermenting bacterium that activates aerobic respiration when a haem source is provided. Two distinct subgroups were characterized: Menaquinones (MK) MK-8 to MK-10, considered as hallmarks of L. lactis , are produced throughout growth. MK-3 and demethylMK-3 [(D)MK-3] are newly identified and are present only late in growth. Production of (D)MK-3 was conditional on the carbon sugar and on the presence of carbon catabolite regulator gene ccpA . Electron flux driven by both (D)MK fractions was shared between the quinol oxidase and extracellular acceptors O2, iron and, with remarkable efficiency, copper. Purified (D)MK-3, but not MK-8–10, complemented a menB defect in L. lactis . We previously showed that a respiratory metabolism is activated in Group B Streptococcus (GBS) by exogenous haem and MK, and that this activity is implicated in virulence. Here we show that growing lactococci donate (D)MK to GBS to activate respiration and stimulate growth of this opportunist pathogen. We propose that conditions favouring (D)MK production in dense microbial ecosystems, as present in the intestinal tract, could favour implantation of (D)MK-scavengers like GBS within the complex.  相似文献   

8.
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.  相似文献   

9.
Genome duplication, after the divergence of Saccharomyces cerevisiae from Kluyveromyces lactis along evolution, has been proposed as a mechanism of yeast evolution from strict aerobics, such as Candida albicans, to facultatives/fermentatives, such as S. cerevisiae. This feature, together with the preponderance of respiration and the use of the pentose phosphate pathway in glucose utilization, makes K. lactis a model yeast for studies related to carbon and oxygen metabolism. In this work, and based on the knowledge of the sequence of the genome of K. lactis, obtained by the Génolevures project, we have constructed DNA arrays from K. lactis including a limited amount of selected probes. They are related to the aerobiosis-hypoxia adaptation and to the oxidative stress response, and have been used to test changes in mRNA levels in response to hypoxia and oxidative stress generated by H(2)O(2). The study was carried out in both wild-type and rag2 mutant K. lactis strains in which glycolysis is blocked at the phosphoglucose isomerase step. This approach is the first analysis carried out in K. lactis for the majority of the genes selected.  相似文献   

10.
Although oxygen is required for normal aerobic respiration, hyperoxia (95% O(2)/5% CO(2)) damages DNA, inhibits proliferation in G1, S and G2 phases of the cell cycle, and induces necrosis. The current study examines whether growth arrest in G1 protects pulmonary epithelial cells from oxidative DNA damage and cell death. Mv1Lu pulmonary adenocarcinoma cells were chosen for studies because hyperoxia inhibits their proliferation in S and G2 phase, while they can be induced to arrest in G1 by altering culture conditions. Hyperoxia inhibited proliferation, increased intracellular redox, and rapidly reduced clonogenic survival. In contrast, Mv1Lu cells treated with transforming growth factor (TGF)-beta1, deprived of serum or grown to confluency, arrested and remained predominantly in G1 even during exposure. Growth arrest in G1 significantly enhanced clonogenic survival by 10-50-fold. Enhanced survival was not due to reduction in the intracellular redox-state of the cells, but instead was associated with reduced DNA strand breaks and p53 expression. Our findings suggest that the protective effects of G1 is mediated not simply by a reduction in intracellular ROS, but rather through an enhanced ability to limit or rapidly recognize and repair damaged DNA.  相似文献   

11.
12.
DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.  相似文献   

13.
Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.  相似文献   

14.
植物低氧胁迫伤害与适应机理的研究进展   总被引:20,自引:1,他引:19  
不良的通气条件导致了正常生长发育的植物生理性缺氧,低氧胁迫是高等植物主要的非生物胁迫因素之一。本文综述了低氧胁迫对植物生长、植株形态的影响,低氧胁迫对植物内部水分、养分吸收的变化,呼吸代谢途径的变化、激素代谢的变化,氧化系统的变化的影响,以及低氧胁迫过程中植物体内信号的传导、基因的表达、蛋白质的合成等,在不同层面分析了低氧胁迫对植物的伤害及植物对低氧逆境适应机理的最新研究成果。  相似文献   

15.
The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.  相似文献   

16.
17.
Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.  相似文献   

18.
This review outlines the recent advances in the knowledge on aerobic and respiratory growth of lactic acid bacteria, focusing on the features of respiration‐competent lactobacilli. The species of the genus Lactobacillus have been traditionally classified as oxygen‐tolerant anaerobes, but it has been demonstrated that several strains are able to use oxygen as a substrate in reactions mediated by flavin oxidases and, in some cases, to synthesize a minimal respiratory chain. The occurrence of genes related to aerobic and respiratory metabolism and to oxidative stress response apparently correlates with the taxonomic position of lactobacilli. Members of the ecologically versatile Lactobacillus casei, L. plantarum and L. sakei groups are apparently best equipped to deal with aerobic/respiratory growth. The shift from anaerobic growth to aerobic (oxygen) and/or respiratory promoting (oxygen, exogenous haem and menaquinone) conditions offers physiological advantages and affects the pattern of metabolite production in several species. Even if this does not result in dramatic increases in biomass production and growth rate, cells grown in these conditions have improved tolerance to heat and oxidative stresses. An overview of benefits and of the potential applications of Lactobacillus cultures grown under aerobic or respiratory conditions is also discussed.  相似文献   

19.
The cytotoxicity of a new nitroxyl nitroxide radical, tert-butyl-2 (4,5-dihydrogen-4,4,5,5-tetramethyl-3-O-1H-imidazole-3-cationic-1-oxyl-2-pyrrolidine-1-carboxylic ester (L-NNP) was examined in MCF-7 and MDA-MB-231 cells. L-NNP treatment resulted in a significant growth inhibition in MCF-7 and MDA-MB-231 cells. Compared with control, 10, 30, and 50 μg/ml L-NNP treatments for 48 h induced significant cell and nuclei swelling, and organelle distension. The marked cell death was seen in a concentration- and time-dependant manner in L-NNP treated groups. The L-NNP treated group displayed a concentration-dependant increase in DNA double strand damage compared to the control and the 1 Gy γ-rays exposure groups. These results suggest that L-NNP could result in more lethal genotoxicity than 1 Gy γ-radiation. Based on mitochondrial alteration (membrane potential loss and SDH activity descend), DNA damage, an increase in MDA production, and GSH-PX inactivation, we predicate that L-NNP induces lipid oxidation and oxidative damage in MCF-7 and MDA-MB-231 cells. Since L-NNP initiated a significant increase in reactive oxygen species, which could largely be inhibited by NAC pretreatment, the overall data strongly suggest that the mechanism of cytotoxicity of L-NNP was its ability to act as a strong free radical, and significantly increase intracellular reactive oxygen species production. This led to intracellular oxidative damage, and antioxidant enzyme inactivation, resulting in cell death. We hypothesize that the greater cytotoxicity of L-NNP in MDA-MB-231 cells than in MCF-7 cells might be due to more ROS production in MDA-MB-231 cells, leading to more oxidative damage.  相似文献   

20.
Efforts were made to eliminate the influence of other factors as far as possible in order to obtain reliable results on the effects of oxygen on the growth of baker's yeast. A cultivation method is presented which permits the study of the effects of aeration intensity under conditions where the influence of catabolite repression is eliminated. A completely synthetic medium with glucose as the only carbon and energy source is also described. The capacity of yeast to perform aerobic metabolism varies when cultivated under different intensities of aeration. A clear maximum is observed for growth with 10% oxygen in the aerating gas mixture. Under conditions where catabolite repression does not function yeast has the potential for oxidative metabolism even under oxygen-limited growth. The main agent controlling the ability of yeast to support growth using only the oxidative metabolism is the available oxygen. At high oxygen tensions the metabolism is disturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号