首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During animal development, morphogenesis of tissues and organs requires dynamic cell shape changes and movements that are accomplished without loss of epithelial integrity. Data from vertebrate and invertebrate systems have implicated several cell surface and cytoskeleton-associated molecules in the establishment and maintenance of epithelial architecture, but there has been little analysis of the genetic regulatory hierarchies that control epithelial morphogenesis in specific tissues. Here we show that the Drosophila Hindsight nuclear zinc-finger protein is required during tracheal morphogenesis for the maintenance of epithelial integrity and assembly of apical extracellular structures known as taenidia. In hindsight (hnt) mutants tracheal placodes form, invaginate, and undergo primary branching as well as early fusion events. Starting at midembryogenesis, however, the tracheal epithelium collapses or expands to give rise to sacs of tissue. While a subset of hnt mutant tracheal cells enters the apoptotic pathway, genetic suppression of apoptosis indicates that this is not the cause of the epithelial defects. Surviving hnt mutant tracheal cells retain cell-cell junctions and a normal subcellular distribution of apical markers such as Crumbs and DE-Cadherin. However, taenidia do not form on the lumenal surface of tracheal cells. While loss of epithelial integrity is a common feature of crumbs, stardust, and hnt mutants, defective assembly of taenidia is unique to hnt mutants. These data suggest that HNT is a tissue-specific factor that regulates maintenance of the tracheal epithelium as well as differentiation of taenidia.  相似文献   

2.
3.
Selection of mutant Mv1Lu mink lung epithelial cells resistant to growth inhibition by transforming growth factor-beta (TGF-beta) has led to the isolation of cell clones with distinct alterations in type I and II TGF-beta receptors. Certain mutant clones present a decreased number or complete loss of detectable type I receptor. Other clones show a loss and/or altered electrophoretic mobility of the type II receptor, with concomitant loss of the type I receptor. Using somatic cell hybridization analysis we demonstrate the recessive nature of these mutants with respect to the wild-type phenotype and define various mutant complementation groups. Among these, hybrids between cells that express only type II receptor (R mutants) and cells that express neither receptor type (DRa mutants) rescue wild-type expression of type I receptors. Moreover, these hybrids regain full responsiveness to TGF-beta 1, as measured by inhibition of DNA synthesis as well as stimulation of fibronectin and plasminogen activator inhibitor-1 production. These results provide evidence for an interaction between TGF-beta receptor components I and II and show that, in Mv1Lu cells, expression of both receptor types is required for mediation of biological responses to TGF-beta 1.  相似文献   

4.
Ankyrins are a family of adapter proteins required for localization of membrane proteins to diverse specialized membrane domains including axon initial segments, specialized sites at the transverse tubule/sarcoplasmic reticulum in cardiomyocytes, and lateral membrane domains of epithelial cells. Little is currently known regarding the molecular basis for specific roles of different ankyrin isoforms. In this study, we systematically generated alanine mutants of clusters of charged residues in the spectrin-binding domains of both ankyrin-B and -G. The corresponding mutants were evaluated for activity in either restoration of abnormal localization of the inositol trisphosphate receptor in the sarcoplasmic reticulum in mutant mouse cardiomyocytes deficient in ankyrin-B or in prevention of loss of lateral membrane in human bronchial epithelial cells depleted of ankyrin-G by small interfering RNA. Interestingly, ankyrin-B and -G share two homologous sites that result in loss of function in both systems, suggesting that common molecular interactions underlie diverse roles of these isoforms. Ankyrins G and B also exhibit differences; mutations affecting spectrin binding had no effect on ankyrin-B function but did abolish activity of ankyrin-G in restoring lateral membrane biogenesis. Depletion of beta(2)-spectrin by small interfering RNA phenocopied depletion of ankyrin-G and resulted in a failure to form new lateral membrane in interphase and mitotic cells. These results demonstrate that ankyrin-G and beta(2)-spectrin are functional partners in biogenesis of the lateral membrane of epithelial cells.  相似文献   

5.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   

6.
Salmonella typhimurium is capable of entering into (invading) nonphagocytic host cells. To systematically identify the bacterial genes necessary for this process, 15,000 Tn10dCm random transposon mutants of S. typhimurium were individually screened for invasiveness, using the human colonic epithelial Caco-2 cell line. Four hundred and eighty-eight mutants had decreased levels of invasiveness; most were nonmotile. However, five mutants, representing four loci, were completely motile. Further characterization of these five mutants showed that they were also unable to enter the dog kidney epithelial cell line MDCK and the mouse macrophage line J774.A1. In contrast to the parental strain, they were unable to disrupt the transepithelial resistance of polarized epithelial monolayers, nor were they able to penetrate across these epithelial barriers. Three of the four classes of mutants remained virulent in mice. The results confirm several aspects of S. typhimurium invasiveness: (i) intact motility enhances invasiveness of cultured cells; (ii) S. typhimurium invasiveness is multifactorial, and at least six distinct genetic loci are involved; and (iii) invasion loci involved in uptake into epithelial cells are also needed for uptake into cultured phagocytic cells. The results also emphasize that decreased levels of invasiveness eliminate bacterial penetration of polarized epithelial barriers and invasiveness loci mutants are not necessarily avirulent.  相似文献   

7.
During the establishment of Escherichia coli O157:H7 infection, its capacity to adhere to host intestinal epithelial cells is the critical first step in pathogenesis. It also has the capability to form biofilms, and because both are surface activities, we sought to gain insight into a potential linkage between biofilm formation and adherence to epithelial cells. We conducted an adherence assay with 51 biofilm-negative mutants and two human epithelial cell lines, T84 and HEp2. Our results show that unlike wild-type cells, biofilm-negative mutants adhere poorly to epithelial cells. Some adhesin-negative mutants were fully competent in biofilm formation, however. Thus, biofilm-forming activity in E. coli O157:H7 EDL933 is required for adherence to T84 and HEp2 cells, but it is not sufficient.  相似文献   

8.
The polarized architecture of epithelia relies on an interplay between the cytoskeleton, the trafficking machinery, and cell-cell and cell-matrix adhesion. Specifically, contact with the basement membrane (BM), an extracellular matrix underlying the basal side of epithelia, is important for cell polarity. However, little is known about how BM proteins themselves achieve a polarized distribution. In a genetic screen in the Drosophila follicular epithelium, we identified mutations in Crag, which encodes a conserved protein with domains implicated in membrane trafficking. Follicle cells mutant for Crag lose epithelial integrity and frequently become invasive. The loss of Crag leads to the anomalous accumulation of BM components on both sides of epithelial cells without directly affecting the distribution of apical or basolateral membrane proteins. This defect is not generally observed in mutants affecting epithelial integrity. We propose that Crag plays a unique role in organizing epithelial architecture by regulating the polarized secretion of BM proteins.  相似文献   

9.
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.  相似文献   

10.
Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.  相似文献   

11.
Two-component regulatory systems play an important role in bacterial virulence. We report that mutation of a Pseudomonas aeruginosa gene designated retS (previously designated fimK; accession number PA4856) encoding a putative hybrid two-component regulator, attenuates multiple virulence mechanisms. The retS mutant was selected from a Tn5 transposon library of the cytotoxic P. aeruginosa strain PA103 based upon expression of a small-colony phenotype suggestive of reduced surface-associated "twitching" motility, a property dependent upon type IV pili. Subsequent analysis revealed that the mutant expressed pilin, albeit at lower levels than wild-type PA103. In a murine model of corneal infection, retS mutation was associated with delayed disease development and altered pathology. In vitro, retS mutants demonstrated loss of acute cytotoxic activity towards corneal epithelia as determined by trypan blue exclusion and by LDH release assays (P<0.0001). This coincided with loss of ExsA-regulated type III secretion. Mutation of retS also impaired ExsA-independent pathogenic mechanisms. When compared to the exsA mutant of PA103, retS mutants exhibited reduced epithelial adherence and invasion and reduced intracellular survival within the cells after invasion. Time-lapse video microscopy revealed that retS mutants, compared to exsA mutants, had a reduced capacity to access, and move along, the basal cell surfaces of corneal epithelial cell monolayers. Taken together, these data suggest that the protein encoded by retS regulates various properties of P. aeruginosa including both ExsA-dependent and ExsA-independent virulence mechanisms.  相似文献   

12.
The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is a multifunctional autotransporter protein that mediates bacterial aggregation and biofilm formation, as well as adhesion and invasion of cultured epithelial cells. To elucidate the structure-function relationships of AIDA-I, we performed transposon-based linker scanning mutagenesis and constructed mutants with site-directed deletions. Twenty-nine different mutants with insertions that did not affect protein expression were obtained. Eleven mutants were deficient for one or two but not all of the functions associated with the expression of AIDA-I. Functional characterization of the transposon mutants and of an additional deletion mutant suggested that the N-terminal third of mature AIDA-I is involved in binding of this protein to cultured epithelial cells. The purified product of the putative domain could bind to cultured epithelial cells, confirming the importance of this region in adhesion. We also identified several different mutants in which invasion and adhesion were changed to different extents and two mutants in which autoaggregation and biofilm formation were also affected differently. These results suggest that although conceptually linked, adhesion and invasion, as well as autoaggregation and biofilm formation, are phenomena that may rely on distinct mechanisms when they are mediated by AIDA-I. This study sheds new light on the workings of a protein belonging to an emerging family of strikingly versatile virulence factors.  相似文献   

13.
E Maidji  S Tugizov  T Jones  Z Zheng    L Pereira 《Journal of virology》1996,70(12):8402-8410
Human cytomegalovirus (CMV) encodes accessory glycoproteins that are dispensable for virus growth in nonpolarized cells in culture. We report that CMV deletion mutants lacking the gene for accessory glycoprotein US9 in the unique short component of the viral genome are impaired in plaque formation in polarized human retinal pigment epithelial (ARPE-19) cells. Comparison of CMV deletion mutants in US9 with herpes simplex virus type 1 deletion mutants lacking glycoproteins gE and gI showed that both of these mutants are impaired in altering junctional complexes and increasing paracellular permeability in polarized ARPE-19 cells cultured on permeable filter supports. Results of functional studies indicate that CMV US9 and homologs of gE have analogous roles in promoting virus spread across lateral membranes of polarized epithelial cells.  相似文献   

14.
15.
16.
Pseudomonas aeruginosa is an opportunistic pathogen that infects the lungs of patients with cystic fibrosis causing aberrant and destructive neutrophil (PMN)-dominated inflammation of airways. Interaction of P. aeruginosa with the lung epithelial barrier resulting in trans-epithelial PMN migration likely represents a key event during PMN recruitment. To investigate bacterial factors involved in interactions with lung epithelial cells, a mutant library of two-component system response regulators was evaluated to identify mutants exhibiting defects in the ability to induce PMN trans-epithelial migration. Of forty-eight mutants, five reproducibly demonstrated a reduced PMN trans-epithelial migration response. All five mutants also exhibited a decreased ability to interact with lung epithelial cells. One mutant identified lacks the response regulator gene roxR, which has not previously been reported to be involved regulating factors that facilitate interactions with lung epithelial cells. This finding suggests that RoxR likely regulates genes with relevance to P. aeruginosa mediated lung disease.  相似文献   

17.
In Drosophila melanogaster certain mutations alter the polarity of trichomes and bristles, cuticular structures secreted by the epithelial cells of the adult fly. Since sensory neurons arise from epithelial cell precursors, and sensory axons grow along the inner faces of epithelial cells, we have studied the developing wings of these mutants to see whether the change in epithelial cell polarity has an influence on the direction of axon outgrowth. The nerve patterns formed in the mutants prickled, inturned, and frizzled, however, were largely normal, indicating that in these cases the polarity of the cuticular structures produced by the epithelial cells is altered without any effect on the polarity of the associated axons.  相似文献   

18.
The ygdP and apaH genes of Salmonella enterica serovar Typhimurium (S. Typhimurium) encode two unrelated dinucleoside polyphosphate (NpnN) hydrolases. For example, YgdP cleaves diadenosine tetraphosphate (Ap4A) producing AMP and ATP, while ApaH cleaves Ap4A producing 2ADP. Disruption of ygdP, apaH individually, and disruption of both genes together reduced intracellular invasion of human HEp-2 epithelial cells by S. Typhimurium by 9-, 250-, and 3000-fold, respectively. Adhesion of the mutants was also greatly reduced compared with the wild type. Invasive capacity of both single mutants was restored by transcomplementation with the ygdP gene, suggesting that loss of invasion was due to increased intracellular NpnN. The normal level of 3 microM adenylated NpnN (ApnN) was increased 1.5-, 3.5-, and 10-fold in the ygdP, apaH and double mutants, respectively. Expression of the putative ptsP virulence gene downstream of ygdP was not affected in the ygdP mutant. Analysis of 19 metabolic enzyme activities and the ability to use a range of carbohydrate carbon sources revealed a number of differences between the mutants and wild type. The increase in intracellular NpnN in the mutants appears to cause changes in gene expression that limit the ability of S. Typhimurium to adhere to and invade mammalian cells.  相似文献   

19.
20.
In the disease course of bacillary dysentery, pathogenic Shigella flexneri invade colonic epithelial cells and spread both within and between host cells. The ability to spread intercellularly allows the organism to infect an entire epithelial layer without significant contact with the extracellular milieu. Using fluorescence activated cell sorter (FACS)-based technology, we developed a rapid and powerful selection strategy for the isolation of S. flexneri mutants that are unable to spread from cell to cell. The majority of mutants identified using this strategy harbour mutations that affect the structure of their lipopolysaccharide or the ability of the bacteria to move intracellularly via actin-based motility; both factors have previously been shown to be essential for cell-to-cell spread. However, using a modified strategy that eliminated both of these types of mutants, we identified several mutants that provide us with evidence that bacterial proteins of the type III secretion system, which are essential for bacterial entry into host cells, also play a role in cell-to-cell spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号