首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change will likelyresult in warmer winter temperatures leading toless snowfall in temperate forests. Thesechanges may lead to increases in soil freezingbecause of lack of an insulating snow cover andchanges in soil water dynamics during theimportant snowmelt period. In this study, wemanipulated snow depth by removing snow for twowinters, simulating the late development of thesnowpack as may occur with global warming, toexplore the relationships between snow depth,soil freezing, soil moisture, and infiltration.We established four sites, each with two pairedplots, at the Hubbard Brook Experimental Forest(HBEF) in New Hampshire, U.S.A. and instrumentedall eight plots with soil and snow thermistors,frost tubes, soil moisture probes, and soillysimeters. For two winters, we removed snowfrom the designated treatment plots untilFebruary. Snow in the reference plots wasundisturbed. The treatment winters (1997/1998 and1998/1999) were relatively mild, withtemperatures above the seasonal norm and snowdepths below average. Results show the treatedplots accumulated significantly less snow andhad more extensive soil frost than referenceplots. Snow depth was a strong regulator ofsoil temperature and frost depth at all sites.Soil moisture measured by time domainreflectometry probes and leaching volumescollected in lysimeters were lower in thetreatment plots in March and April compared tothe rest of the year. The ratio of leachatevolumes collected in the treatment plots tothat in the reference plots decreased as thesnow ablation seasons progressed. Our data showthat even mild winters with low snowfall,simulated by snow removal, will result inincreased soil freezing in the forests at theHBEF. Our results suggest that a climate shifttoward less snowfall or a shorter duration ofsnow on the ground will produce increases insoil freezing in northern hardwood forests.Increases in soil freezing will haveimplications for changes in soil biogeochemicalprocesses.  相似文献   

2.
蒸散发是水循环的重要组成部分,但高海拔山区的观测难度导致对于该区实际蒸散发时空变化规律的认识相对缺乏.本文利用称重式蒸渗仪对黑河上游山区排露沟流域的草地蒸散发进行实地观测,研究了不同生长阶段草地蒸散发的日变化规律.结果表明:冻结期蒸发过程为冰雪升华,有着与其他3个时期大为不同的蒸发日变化规律,表现为冰雪升华量在无太阳辐射的时段几乎无变化,在一天中总辐射最大和相对湿度最低的时段,冰雪升华量有所增加.生长前期是一年中的冰雪消融期,以融雪蒸发和土壤蒸发为主.生长期是蒸散发最旺盛的时期,受连续降雨事件的影响,极端大值和极端小值出现于同一时刻.生长后期以土壤蒸发为主,不同于生长前期和生长期蒸散发的日变化呈单峰型,生长后期蒸发的日变化有3个波峰.  相似文献   

3.
Freezing and thawing may alter element turnover and solute fluxes in soils by changing physical and biological soil properties. We simulated soil frost in replicated snow removal plots in a mountainous Norway spruce stand in the Fichtelgebirge area, Germany, and investigated N net mineralization, solute concentrations and fluxes of dissolved organic carbon (DOC) and of mineral ions (NH4+, NO3, Na+, K+, Ca2+, Mg2+). At the snow removal plots the minimum soil temperature was −5 °C at 5 cm depth, while the control plots were covered by snow and experienced no soil frost. The soil frost lasted for about 3 months and penetrated the soil to about 15 cm depth. In the 3 months after thawing, the in situ N net mineralization in the forest floor and upper mineral soil was not affected by soil frost. In late summer, NO3 concentrations increased in forest floor percolates and soil solutions at 20 cm soil depth in the snow removal plots relative to the control. The increase lasted for about 2–4 months at a time of low seepage water fluxes. Soil frost did not affect DOC concentrations and radiocarbon signatures of DOC. No specific frost effect was observed for K+, Ca2+ and Mg2+ in soil solutions, however, the Na+ concentrations in the upper mineral soil increased. In the 12 months following snowmelt, the solute fluxes of N, DOC, and mineral ions were not influenced by the previous soil frost at any depth. Our experiment did not support the hypothesis that moderate soil frost triggers solute losses of N, DOC, and mineral ions from temperate forest soils.  相似文献   

4.
Short-term N2O emission occurs in relation to snowmelt within seasonally frozen soil. To understand the effects of changing winter climates on the N2O flux, snow cover manipulation experiments are useful. In Japan, snow cover manipulation is practiced by farmers to improve agricultural yield and is executed either by applying a broadcast of blackish agent onto the snow cover, which leads to faster snow-melting thereby extending the crop-growing season, or by snow cover removal/re-accumulation, leading to an enhanced soil frost depth for weed management. Implementation of these practices involves using an amount of fossil fuel, in addition to influencing soil-derived N2O emissions, therefore, the load factors of snow cover management practices per unit area of agricultural field were estimated in this study. Field data including micrometeorological conditions, ground surface flux of N2O, and amount of fossil fuel consumed during machinery operation for management practices, were obtained at two sites in Hokkaido over 2 years (2008–2010). Fuel consumption for the field spreading was found to be unexpectedly small (0.017 Mg CO2 eq ha?1). It was therefore suggested that acceleration of snowmelt may have the potential to reduce net greenhouse gas emissions if the agent used is a low-degradable C-rich material, such as charcoal. For soil frost control, the fossil fuel consumption during a set of snow cover removal/re-accumulation (estimated as 0.052 Mg CO2 eq ha?1) is discussed, together with the relationship between possible mechanisms causing stimulation of N2O production in frozen soil and inherent large differences in N2O flux among sites.  相似文献   

5.
温带荒漠的积雪沿灌丛始融,并以灌丛为中心形成融雪漏斗,导致融雪水向灌丛基部汇集。观测资料表明:通过灌丛对融雪水分布的反馈,使灌丛周围的沙层含水量明显增加,为裸沙区的152.1一228.9%,从而提高融雪水的利用率并改善灌丛自身的供水条件,对荒漠植被的分布格局亦起一定影响。  相似文献   

6.
准噶尔盆地荒漠灌丛对融雪水空间分布的反馈初探   总被引:3,自引:0,他引:3       下载免费PDF全文
温带荒漠的积雪沿灌丛始融,并以灌丛为中心形成融雪漏斗,导致融雪水向灌丛基部汇集。观测资料表明:通过灌丛对融雪水分布的反馈,使灌丛周围的沙层含水量明显增加,为裸沙区的152.1-228.9%,从而提高融雪水的利用率并改善灌丛自身的供水条件,对荒漠植被的分布格局亦起一定影响。  相似文献   

7.
Climate change is disproportionately impacting mountain ecosystems, leading to large reductions in winter snow cover, earlier spring snowmelt and widespread shrub expansion into alpine grasslands. Yet, the combined effects of shrub expansion and changing snow conditions on abiotic and biotic soil properties remains poorly understood. We used complementary field experiments to show that reduced snow cover and earlier snowmelt have effects on soil microbial communities and functioning that persist into summer. However, ericaceous shrub expansion modulates a number of these impacts and has stronger belowground effects than changing snow conditions. Ericaceous shrub expansion did not alter snow depth or snowmelt timing but did increase the abundance of ericoid mycorrhizal fungi and oligotrophic bacteria, which was linked to decreased soil respiration and nitrogen availability. Our findings suggest that changing winter snow conditions have cross-seasonal impacts on soil properties, but shifts in vegetation can modulate belowground effects of future alpine climate change.  相似文献   

8.
Climate change effects on snow cover and thermic regime in alpine tundra might lead to a longer growing season, but could also increase risks to plants from spring frost events. Alpine snowbeds, i.e. alpine tundra from late snowmelt sites, might be particularly susceptible to such climatic changes. Snowbed communities were grown in large monoliths for two consecutive years, under different manipulated snow cover treatments, to test for effects of early (E) and late (L) snowmelt on dominant species growth, plant functional traits, leaf area index (LAI) and aboveground productivity. Spring snow cover was reduced to assess the sensitivity of snowbed alpine species to severe early frost events, and dominant species freezing temperatures were measured. Aboveground biomass, productivity, LAI and dominant species growth did not increase significantly in E compared to L treatments, indicating inability to respond to an extended growing season. Edapho‐climatic conditions could not account for these results, suggesting that developmental constraints are important in controlling snowbed plant growth. Impaired productivity was only detected when harsher and more frequent frost events were experimentally induced by early snowmelt. These conditions exposed plants to spring frosts, reaching temperatures consistent with the estimated freezing points of the dominant species (~?10 °C). We conclude that weak plasticity in phenological response and potential detrimental effects of early frosts explain why alpine tundra from snowbeds is not expected to benefit from increased growing season length.  相似文献   

9.
Early succession aspen and late succession conifer forests have different architecture and physiology affecting hydrologic transfer processes. An evaluation of water pools and fluxes was used to determine differences in the hydrologic dynamics between stands of quaking aspen (Populus tremuloides) and associated stands of mixed conifer consisting of white fir (Abies concolor), Douglas-fir (Pseudotsuga menziesii), and Engelmann spruce (Picea engelmannii). In 2005 and 2006, measurements of snow water accumulation, snow ablation (melt), soil water content, snowpack sublimation, and evapotranspiration (ET) were measured in adjacent aspen and conifer stands. Peak snow water equivalent (SWE) averaged 34–44% higher in aspen in 2005 (average snow fall) and 2006 (above average snow fall), respectively, whereas snow ablation rates were greater in aspen stands (21 mm day−1) compared to conifer stands (11 mm day−1). When changes in soil water content (due to over-winter snowmelt) were combined with peak snow accumulation in 2006, aspen had greater potential (42–83%) water yield for runoff and groundwater recharge. Snowpack sublimation during the ablation period was not significantly different between meadow, aspen, and conifer sites and comprised less than 5% of the winter precipitation. Extended conifer transpiration in spring and fall did not contribute to large differences in water yield (<28 mm y−1). Summertime ET rates were higher in aspen plots (3.6 mm day−1) than in conifer plots (2.7 mm day−1), and differences in net ET largely reflected soil column porosity. This study shows that the largest differences in annual water yield between aspen and conifer stands result from differences in SWE and net summertime ET. Although SWE and accumulation of water in soil was greater in aspen, it was partly offset by greater net annual ET losses in aspen.  相似文献   

10.
In snowbed habitats, characterized by a long-lasting snow cover, the timing of snowmelt can be included among the major factors controlling plant phenology. Nevertheless, only a few ecological studies have tested the responses of flowering phenology of species growing in very late snow-free habitats to an advanced snowmelt (AS) date. The aim of this study was to determine the impacts of an extremely earlier melt-out of snow on flowering phenology of vascular plant species inhabiting an alpine snowbed. The study was conducted in the high Gavia Valley (Italy, 2,700 m a.s.l.). On 30th May 2012, we removed manually the snow cover and set up an experiment with 5 AS and 5 control plots. Phenological observations of the most abundant vascular species were conducted every 4–6 days. Moreover, we calculated cumulative soil temperature and recorded the mortality of reproductive structures of three species. For several species flowering occurred earlier, and the prefloration period was extended in the AS treatment in comparison with the control. For the majority of species, cumulative soil temperatures in the AS treatment and the control were comparable, confirming that temperature exerts the main control on the flowering of the species inhabiting snowbeds. Earlier flowering species resulted more affected by an AS date in comparison with later flowering species. The mortality of reproductive structures did not increase in the AS treatments in comparison with the control suggesting that few and weak frost events in late spring do not affect the survival of reproductive structures of the species studied.  相似文献   

11.
Atmospheric nitrogen (N) deposition increasingly impacts remote ecosystems. At high altitudes, snow is a key carrier of water and nutrients from the atmosphere to the soil. Medium-sized subalpine grassland terraces are characteristic of agricultural landscapes in the French Alps and influence spatial and temporal snow pack variables. At the Lautaret Pass, we investigated snow and soil characteristics along mesotopographic gradients across the terraces before and during snowmelt. Total N concentrations in the snowpack did not vary spatially and were dominated by organic N forms either brought by dry deposition trapped by the snow, or due to snow-microbial immobilization and turnover. As expected, snowpack depth, total N deposited with snow and snowmelt followed the terrace toposequence; more snow-N accumulated towards the bank over longer periods. However, direct effects of snow-N on soil-N cycling seem unlikely since the amount of nitrogen released into the soil from the snowpack was very small relative to soil-N pools and N mineralization rates. Nevertheless, some snow-N reached the soil at thaw where it underwent biotic and abiotic processes. In situ soil-N mineralization rates did not vary along the terrace toposequence but soil-N cycling was indirectly affected by the snowpack. Indeed, N mineralization responded to the snowmelt dynamic via induced temporal changes in soil characteristics (i.e. moisture and T°) which cascaded down to affect N-related microbial activities and soil pH. Soil-NH4 and DON accumulated towards the bank during snowmelt while soil-NO3 followed a pulse-release pattern. At the end of the snowmelt season, organic substrate limitation might be accountable for the decrease in N mineralization in general, and in NH4 + production in particular. Possibly, during snowmelt, other biotic or abiotic processes (nitrification, denitrification, plant uptake, leaching) were involved in the transformation and transfer of snow and soil-N pools. Finally, subalpine soils at the Lautaret Pass during snowmelt experienced strong biotic and abiotic changes and switched between a source and a sink of N.  相似文献   

12.
天山北坡积雪消融对不同冻融阶段土壤温湿度的影响   总被引:2,自引:0,他引:2  
积雪作为一种特殊的覆被,直接影响着土壤温度、土壤水分分布及其冻结深度、冻结速率等,影响当地的生态水文过程。利用2017年11月1日至2018年3月31日天山北坡伊犁阿热都拜流域的土壤含水率资料,划分土壤不同冻融阶段,结合积雪不同阶段,进而分析积雪消融对季节性冻土温湿度的影响。结果表明:在整个土壤冻融期间,土壤温湿度的变化取决于积雪深度、大气温度和雪面温度的高低,且与其稳定性有关。土壤冻结阶段,土壤温湿度持续下降,表层土壤温湿度受气温影响较大,且波动明显,而深层土壤的温湿度变化平缓;土壤完全冻结时,有稳定积雪覆盖,由于积雪的高反射性、低导热性,影响着地气之间的热量传递,因此土壤的温湿度变化较为平稳,积雪有一定的保温作用;冻土消融阶段,气温回升,积雪消融,地表出露,各层土壤温度随气温变化而变化,且越靠近地表,土壤温度越高,变幅越大,与冻结期完全相反。由于融雪水的下渗,土壤湿度快速增加。进一步分析积雪与土壤温湿度的相关性得出,积雪对土壤温湿度的影响分不同时期,对土壤温度的影响主要在积雪覆盖时,对土壤湿度的影响主要是在积雪消融时期,这对于研究该地生态水文循环及后续融雪性洪水的模拟与预报具有一定...  相似文献   

13.
Changes in winter time conditions at high‐latitude ecosystems could severely affect the carbon exchange processes. Using a 15 year stream record combined with winter field measurements and laboratory experiment, we studied the regulation of dissolved organic carbon (DOC) concentration in stream water draining boreal mire during snow melt. The most unanticipated finding was that cold soils with deep soil frost resulted in increased snow melt DOC concentrations in the stream runoff. Wintertime field measurements of DOC concentrations below the mire soil frost showed that this phenomenon could be explained by freeze‐out of DOC giving higher levels of DOC in the soil water below the ice as the soil frost developed downwards in the mire. Experimental freezing of water with a certain DOC concentration in the laboratory further corroborated the freeze‐out of DOC. In this experiment, as much as 96% of the DOC was excluded from the ice, whereas the freeze‐out in the mire was less effective (60%). The difference between the proportion of DOC retained in pure water relative to the proportion retained in peat water during freezing is probably due to trapped DOC in the solid peat soil matrix. A simple mass‐balance model showed that to explain the higher stream DOC concentrations during a winter with deep soil frost, approximately 0.5% of the mire area needed to be hydrologically connected to the stream discharge. In the stream records, we also found that the DOC concentrations during snow melt episodic runoff were negatively related to increasing intensity of the snow melt episodes (dilution by low DOC snow melt water) and higher previous export of DOC.  相似文献   

14.
The production of artificial snow and the use of snow additives in ski resorts have increased considerably during the last 20 years. Their ecological consequences are the subject of environmental concerns. This review compiles studies about the ecological implications of ski pistes preparation in general and of artificial snow production. The main direct impacts of ski piste preparation on the vegetation are related to the compaction of the snow cover, namely the induction of soil frost, the formation of ice layers, mechanical damage and a delay in plant development. The vegetation reacts with changes in species composition and a decrease in biodiversity. Artificial snowing modifies some of these impacts: The soil frost is mitigated due to an increased insulation of the snowpack, whereas the formation of ice layers is not considerably changed. The mechanical impacts of snow-grooming vehicles are mitigated due to the deeper snow cover. The delay of the vegetation development is enhanced by a considerably postponed snowmelt. Furthermore, artificial snowing induces new impacts to the alpine environment. Snowing increases the input of water and ions to ski pistes, which can have a fertilising effect and hence change the plant species composition. Increasingly, snow additives, made of potentially phytopathogenic bacteria, are used for snow production. They enhance ice crystal formation due to their ice nucleation activity. Although sterilised, additives affected the growth of some alpine plant species in laboratory experiments. Salts are applied not only but preferably on snowed pistes to improve the snow quality for ski races. The environmental impacts of most salts have not yet been investigated, but a commonly used nitrate salt has intense fertilising properties. Although snowing mitigates some of the negative impacts of ski piste preparation in general, new impacts induced by snowing could be non-beneficial to the vegetation, which, however, has yet to be clarified.  相似文献   

15.
Apart from a general increase of mean annual air temperature, climate models predict a regional increase of the frequency and intensity of soil frost with possibly strong effects on C cycling of soils. In this study, we induced mild soil frost (up to −5 °C in a depth of 5 cm below surface) in a Norway spruce forest soil by removing the natural snow cover in the winter of 2005/2006. Soil frost lasted from January to April 2006 and was detected down to 15 cm depth. Soil frost effectively reduced soil respiration in the snow removal plots in comparison to undisturbed control plots. On an annual basis 6.2 t C ha−1 a−1 were emitted in the control plots compared with 5.1 t C ha−1 a−1 in the snow removal plots. Only 14% of this difference was attributed to reduced soil respiration during the soil frost period itself, whereas 63% of this difference originated from differences during the summer of 2006. Radiocarbon (Δ14C) signature of CO2 revealed a considerable reduction of heterotrophic respiration on the snow removal plots, only partly compensated for by a slight increase of rhizosphere respiration. Similar CO2 concentrations in the uppermost mineral horizons of both treatments indicate that differences between the treatments originated from the organic horizons. Extremely low water contents between June and October of 2006 may have inhibited the recovery of the heterotrophic organisms from the frost period, thereby enhancing the differences between the control and snow removal plots. We conclude that soil frost triggered a change in the composition of the microbial community, leading to an increased sensitivity of heterotrophic respiration to summer drought. A CO2 pulse during thawing, such as described for arable soils several times throughout the literature, with the potential to partly compensate for reduced soil respiration during soil frost, appears to be lacking for this soil. Our results from this experiment indicate that soil frost reduces C emission from forest soils, whereas mild winters may enhance C losses from forest soils.  相似文献   

16.
Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost.  相似文献   

17.
Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.Subject terms: Metagenomics, Climate-change ecology, Microbial ecology, Biogeochemistry, Soil microbiology  相似文献   

18.
In arctic tundra, shrubs can significantly modify the distribution and physical characteristics of snow, influencing the exchanges of energy and moisture between terrestrial ecosystems and the atmosphere from winter into the growing season. These interactions were studied using a spatially distributed, physically based modelling system that represents key components of the land–atmosphere system. Simulations were run for 4 years, over a 4‐km2 tundra domain located in arctic Alaska. A shrub increase was simulated by replacing the observed moist‐tundra and wet‐tundra vegetation classes with shrub‐tundra; a procedure that modified 77% of the simulation domain. The remaining 23% of the domain, primarily ridge tops, was left as the observed dry‐tundra vegetation class. The shrub enhancement increased the averaged snow depth of the domain by 14%, decreased blowing‐snow sublimation fluxes by 68%, and increased the snowcover's thermal resistance by 15%. The shrub increase also caused significant changes in snow‐depth distribution patterns; the shrub‐enhanced areas had deeper snow, and the non‐modified areas had less snow. This snow‐distribution change influenced the timing and magnitude of all surface energy‐balance components during snowmelt. The modified snow distributions also affected meltwater fluxes, leading to greater meltwater production late in the melt season. For a region with an annual snow‐free period of approximately 90 days, the snow‐covered period decreased by 11 days on the ridges and increased by 5 days in the shrub‐enhanced areas. Arctic shrub increases impact the spatial coupling of climatically important snow, energy and moisture interactions by producing changes in both shrub‐enhanced and non‐modified areas. In addition, the temporal coupling of the climate system was modified when additional moisture held within the snowcover, because of less winter sublimation, was released as snowmelt in the spring.  相似文献   

19.
Climate change may cause a decrease in snow cover in northern latitudes. This, on the other hand, may result in more severe soil frost even in areas where it is not common at present, and may lead to increased stress on the tree canopy. We studied the effects of snow removal and consequent changes in soil frost and water content on the physiology of Norway spruce (Picea abies [L.] Karst.) needles and implications on root biomass. The study was conducted at a 47-year-old Norway spruce stand in eastern Finland during the two winters of 2005/06 and 2006/07. The treatments in three replicates were: (i) natural snow accumulation and melting (CTRL), (ii) artificial snow removal during the winter (OPEN), and (iii) the same as OPEN, but the ground was insulated in early spring to delay soil thawing (FROST). In spite of the deeper soil frost in the OPEN than in the CTRL treatment, soil warming in spring occurred at the same time, whereas soil warming in the FROST was delayed by 2 and 1.5 months in 2006 and 2007, respectively. The soil water content was affected by snow manipulations, being at a lower level in the OPEN and FROST than CTRL in spring and early summer. The physiological measurements of the needles (e.g. starch, carbon and nitrogen content and apoplastic electrical resistance) showed differences between soil frost treatments. The differences were mostly seen between the CTRL and FROST, but also in the case of the starch content in early spring 2007 between the CTRL and OPEN. The needle responses in the FROST were more evident after the colder winter of 2006. The physiological changes seemed to be related to the soil temperature and water content in the early growing season rather than to the wintertime soil temperature. No difference was found in the fine root (diameter < 2 mm) biomass between the treatments assessed in 2007. In the future, conditions similar to the OPEN treatment may be more common than at present in areas experiencing a thick snow cover. The present experiment took place over the course of two years. It is possible that whenever thin snow cover occurs yearly, the reduced starch content during the early spring may be reflected in the tree growth itself as a result of reduced energy reserves.  相似文献   

20.
Recent work in seasonally snow covered ecosystems has identifiedthawed soil and high levels of heterotrophic activity throughout the winterunder consistent snow cover. We performed measurements during the winter of1994 to determine how the depth and timing of seasonal snow cover affectsoil microbial populations, surface water NO loss during snowmelt, and plant Navailability early in the growing season. Soil under early accumulating,consistent snow cover remained thawed during most of the winter and bothmicrobial biomass and soil inorganic N pools gradually increased under thesnowpack. At the initiation of snowmelt, microbial biomass N pools increasedfrom 3.0 to 5.9 g n m-2,concurrent with a decrease in soil inorganic N pools. During the latterstages of snowmelt, microbial biomass N pools decreased sharply without aconcurrent increase in inorganic N pools or significant leaching losses. Incontrast, soil under inconsistent snow cover remained frozen during most ofthe winter. During snowmelt, microbial biomass initially increased from 1.7to 3.1 g N m-2 and thendecreased as sites became snow-free. In contrast to smaller pool sizes,NO export during snowmeltfrom the inconsistent snow cover sites of 1.14 (±0.511) g N m-2 was significantly greater (p< 0.001) than the 0.27 (±0.16) g N m-2 exported from sites with consistent snowcover. These data suggest that microbial biomass in consistentlysnow-covered soil provides a significant buffer limiting the export ofinorganic N to surface water during snowmelt. However, this buffer is verysensitive to changes in snowpack regime. Therefore, interannual variabilityin the timing and depth of snowpack accumulation may explain the year toyear variability in inorganic N concentrations in surface water theseecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号