首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).  相似文献   

2.
Three red-pink pigmented strains, designated A1-12(T), A2-50A(T) and A2-91(T), were recovered from two different sites in a uranium mine. For all strains, the optimum growth temperature was 25°C, the optimum pH was 6.0-6.5 and the DNA G+C contents were between 60 and 63.4 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the fatty acid profiles contained iso- and anteiso-branched C15 fatty acids, summed feature 3 (16:1 ω6c and/or ω7c and/or 15:0 iso 2-OH), summed feature 4 (17:1 anteiso B and/or iso I) and the unsaturated fatty acid 16:1 ω5c as the major components. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented three distinct branches within the family Flexibacteraceae most closely related to the members of the genus Hymenobacter. Strain A1-12(T) formed a distinct phylogenetic line along with H. rigui KCTC 12533(T) and they shared approximately 98.9% 16S rRNA gene sequence similarity. However, these two strains shared only 14.7% pairwise similarity in their genomic DNA. Strains A2-50A(T) and A2-91(T) formed two distinct lineages, related to the species H. soli KCTC 12607(T), sharing about 95.5% 16S rRNA gene sequence similarity between themselves, and 88.3 and 92.0% with other members of the genus Hymenobacter. Based on the phylogenetic analysis and physiological and biochemical characteristics, these isolates were considered to represent three novel species for which we propose the names Hymenobacter perfusus for strain A1-12(T) (=CIP 110166=LMG 26000), Hymenobacter flocculans for strain A2-50A(T) (=CIP 110139=LMG 25699) and Hymenobacter metalli for strain A2-91(T) (=CIP 110140=LMG 25700).  相似文献   

3.
Two Gram-negative, nonmotile, coccobacilli, SW-3T and SW-100T, were isolated from sea water of the Yellow Sea in Korea. Strains SW-3T and SW-100T contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and C18:1 omega9c and C16:0 as the major fatty acids. The DNA G+C contents of strains SW-3T and SW-100T were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on 16S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-3T and SW-100T exhibited a 16S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-3T exhibited 16S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-100T exhibited 16S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM 14962T (98.0% similarity). Strains SW-3T and SW-100T exhibited mean levels of DNA-DNA relatedness of 7.3-16.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-3T and SW-100T were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. nov. (type strain SW-3T=KCTC 12259T=DSM 16312T) and Acinetobacter seohaensis sp. nov. (type strain SW-100T=KCTC 12260T=DSM 16313T) are proposed, respectively.  相似文献   

4.
5.
Syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis is an alternative methanogenic pathway in certain thermophilic anaerobic environments such as high-temperature oil reservoirs and thermophilic biogas reactors. In these environments, the dominant thermophilic methanogens were generally related to uncultured organisms of the genus Methanothermobacter. Here we isolated two representative strains, Tm2(T) and HMD, from the oil sands and oil production water in the Shengli oil field in the People's Republic of China. The type strain, Tm2(T), was nonmotile and stained Gram positive. The cells were straight to slightly curved rods (0.3 μm in width and 2.2 to 5.9 μm in length), but some of them possessed a coccal shape connecting with the rods at the ends. Strain Tm2(T) grew with H(2)-CO(2), but acetate is required. Optimum growth of strain Tm2(T) occurred in the presence of 0.025 g/liter NaCl at pH 6.9 and a temperature of 65°C. The G+C content of the genomic DNA was 40.1 mol% ± 1.3 mol% (by the thermal denaturation method) or 41.1 mol% (by high-performance liquid chromatography). Analysis of the 16S rRNA gene sequence indicated that Tm2(T) was most closely related to Methanothermobacter thermautotrophicus ΔH(T) and Methanothermobacter wolfeii VKM B-1829(T) (both with a sequence similarity of 96.4%). Based on these phenotypic and phylogenic characteristics, a novel species was proposed and named Methanothermobacter crinale sp. nov. The type strain is Tm2(T) (ACCC 00699(T) = JCM 17393(T)).  相似文献   

6.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

7.
A new psychrotolerant methanogenic archaeon strain ZS was isolated from anoxic lake sediments (Switzerland). The cells of the organism were non-motile cocci, 1.5-3.5 microm in diameter. The cells aggregated and formed pseudoparenchyma. The cell wall was Gram-positive. The organism utilized methanol, mono-, di-, trimethylamine and H2/CO2 with methane production. The temperature range for growth was 1-35 degrees C with an optimum at 25 degrees C. The DNA G+C content of the organism was 43.4. mol%. Analysis of the 16S rRNA gene sequence showed that strain ZS was phylogenetically closely related to members of the genus Methanosarcina, but clearly differed from all described species of this genus (95.6-97.6% of sequence similarity). The level of DNA-DNA hybridization of strain ZS with Methanosarcina barkeri and Methanosarcina mazei was 15 and 31%, respectively. Based on the results of physiological and phylogenetic studies strain ZS can be assigned to a new species of the genus Methanasarcina. The name Methanosarcina lacustris sp. nov. is proposed. The type strain is ZS (= DSM 13486T, VKM B-2268).  相似文献   

8.
A moderately halophilic bacterial strain 15-13(T), which was isolated from soda meadow saline soil in Daqing City, Heilongjiang Province, China, was subjected to a polyphasic taxonomic study. The cells of strain 15-13 were found to be Gram-negative, rod-shaped, and motile. The required growth conditions for strain 15-13(T) were: 1-23% NaCl (optimum, 7%), 10-50°C (optimum, 35°C), and pH 7.0-11.0 (optimum, pH 9.5). The predominant cellular fatty acids were C(18:1) ω7c (60.48%) and C(16:0) (13.96%). The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 15-13(T) clustered within a branch comprising species of the genus Halomonas. The closest phylogenetic neighbor of strain 15-13(T) was Halomonas pantelleriensis DSM 9661(T) (98.9% 16S rRNA gene sequence similarity). The level of DNA-DNA relatedness between the novel isolated strain and H pantelleriensis DSM 9661(T) was 33.8%. On the basis of the phenotypic and phylogenetic data, strain 15-13(T) represents a novel species of the genus Halomonas, for which the name Halomonas alkalitolerans sp. nov. is proposed. The type strain for this novel species is 15-13(T) (=CGMCC 1.9129(T) =NBRC 106539(T)).  相似文献   

9.
Three strains of strictly aerobic, Gram-negative, naphthalene-degrading bacteria isolated from polychlorinated-dioxin-contaminated soil and sediment were characterized. These isolates grew well with naphthalene as the sole carbon and energy source, degrading it completely within 24 h of incubation. The isolates also degraded dibenzofuran co-metabolically in the presence of naphthalene with the concomitant production of yellow intermediate metabolite(s). A 16S rRNA gene sequence analysis revealed that the isolates affiliated to the genus Novosphingobium with Novosphingobium pentaromativorans and Novosphingobium subarcticum as their nearest phylogenetic neighbors (97.4-97.5% similarity). The isolates had a genomic DNA G+C ratio of 64.5-64.6 mol% and formed a genetically coherent group distinguishable from any established species of the genus Novosphingobium at a DNA-DNA hybridization level of less than 46%. The cellular fatty acids were characterized by the predominance of 18 : 1omega7c with significant proportions of 16 : 0, 16 : 1omega7c, 17 : 1omega6c and 2-OH 14 : 0. Sphingoglycolipids were present. The major respiratory quinone was ubiquinone-10. Spermidine was detected as the major polyamine. The distinct taxonomic position of the isolates within the Novosphingobium was also demonstrated by physiological and biochemical testing. Based on these phylogenetic and phenotypic data, we propose Novosphingobium naphthalenivorans sp. nov. to accommodate the novel isolates. The type strain is strain TUT562(T) (DSM 18518(T), JCM 13951(T), NBRC 102051(T)).  相似文献   

10.
A new genus, Hansschlegelia, and a new species, Hansschlegelia plantiphila, are proposed for three strains of methanol-utilizing bacteria isolated from lilac buds (strain S(1)(T)), linden buds (strain S(2)) and blue spruce needles (strain S(4)), which were selected in winter at -17 degrees C. These bacteria are aerobic, Gram-negative, colorless, non-motile short rods that multiply by binary fission and employ the ribulose bisphosphate (RuBP) and the serine pathways for C(1) assimilation. The strains have a limited number of growth substrates and use methanol, methylamine, formate, CO(2)/H(2) and glycerol as carbon and energy sources. Only strain S(1)(T) grows with ethanol and inulin. The strains are neutrophilic and mesophilic, and synthesize phytohormones (auxins and cytokinins) and vitamin B(12). Their major cellular fatty acids are saturated C(16:0), straight-chain, unsaturated C(18:1)(omega)(7) and cyclopropane C(19 cyc) acids. The main ubiquinone is ubiquinone-10 (Q-10). The dominant phospholipids are phosphatidylethanolamine, phosphatidylcholine and diphosphatidylglycerol (cardiolipin). The DNA G+C content is 68.5+/-0.2 mol%. The strains share almost identical 16S rRNA gene sequences, a high DNA-DNA hybridization value (72-86%) and represent a novel lineage of autotrophic methanol-utilizing bacteria within the Alphaproteobacteria. Collectively, these strains comprise a new genus and species H. plantiphila gen. nov., sp. nov., with strain S(1)(T) (VKM B-2347(T), NCIMB 14035(T)) as the type strain.  相似文献   

11.
A Gram-negative, deep brown-pigmented Gammaproteobacteria, strain IPL-1(T), capable of oxidizing indole was isolated from a lindane-contaminated site and subjected to a polyphasic taxonomic study. Most of the physiological and biochemical properties, major fatty acids (C(18:1)omega7c, C(16:1)omega7c/iso C(15:0) 2OH and C(16:0)), estimated DNA G+C content (67.2mol%) and 16S rRNA gene sequence analysis showed that strain IPL-1(T) belonged to the genus Pseudomonas. Strain IPL-1(T) exhibited highest 16S rRNA gene sequence similarity with Pseudomonas pseudoalcaligenes (99.0%), followed by Pseudomonas alcaliphila (98.7%), Pseudomonas oleovorans (98.3%), Pseudomonas nitroreducens (98.0%), Pseudomonas mendocina (97.6%) and Pseudomonas stutzeri (97.4%). However, the DNA-DNA relatedness values between strain IPL-1(T) and the closely related taxa were between 22% and 61%. On the basis of differential phenotypic characteristics and genotypic distinctiveness, strain IPL-1(T) should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas indoloxydans is proposed. The type strain is IPL-1(T) (=MTCC 8062(T)=JCM 14246(T)).  相似文献   

12.
Genotypic and phenotypic analyses were performed on five Gram-negative, catalase and oxidase-positive, rod-shaped bacteria isolated from the gill and liver of four rainbow trout. Studies based on comparative 16S rRNA gene sequence analysis showed that the five new isolates shared 99.8-100% sequence similarity and that they belong to the genus Chryseobacterium. The nearest phylogenetic neighbours of the strain 701B-08(T) were Chryseobacterium ureilyticum F-Fue-04IIIaaaa(T) (99.1% 16S rRNA gene sequence similarity) and Chryseobacterium joosteii LMG 18212(T) (98.6%). DNA-DNA hybridization values between the five isolates were 91-99% and ranged from 2 to 53% between strain 701B-08(T) and the type strains of phylogenetically closely related species of Chryseobacterium. Strain 701B-08(T) had a DNA G+C content of 36.3 mol%, the major fatty acids were iso-C(15:0), iso-C(17:1)ω9c, C(16:1)ω6c and iso-C(17:0) 3-OH and the predominant respiratory quinone was MK-6. The novel isolates were distinguished from related Chryseobacterium species by physiological and biochemical tests. The genotypic and phenotypic properties of the isolates from rainbow trout suggest their classification as representatives of a novel species of the genus Chryseobacterium, for which the name Chryseobacterium oncorhynchi sp. nov. is proposed. The type strain is 701B-08(T) (=CECT 7794(T)=CCUG 60105(T)).  相似文献   

13.
A taxonomic study of three aerobic, Gram-negative, non-pigmented, non-motile rod-shaped bacterial strains, designated KMM 9008, KMM 9017, and KMM 9024(T), which were isolated from a sandy sediment sample collected from the Sea of Japan seashore, was undertaken. The DNA-DNA hybridization values of 88-96% obtained between novel strains confirm their assignment to the same species. An analysis of the nearly complete 16S rRNA gene sequences showed that the novel isolates were closely related to each other (99.6-100% sequence similarity) and shared highest sequence similarities to the described genera Celeribacter (96.2-95.9%), Pseudoruegeria (95.6-94.3%), and Thalassobacter (95.2-93.1%) within the class Alphaproteobacteria. The major isoprenoid quinone was Q-10, polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidic acid, an unknown aminolipid and an unknown lipid as prevalent, and phosphatidylethanolamine was a minor component, and major fatty acids were C(18:1) ω7c , followed by 11-Methyl C(18:1) ω7c, C(12:1) and C(10:0) 3-OH in all strains. The DNA G+C content of strains KMM 9008, KMM 9017, and KMM 9024(T) was in the range of 56.7-60 mol%. Based on distinctive phenotypic characteristics and phylogenetic distance, strain KMM 9024(T) (=NRIC 0787(T) = JCM 17190(T)) represents the type strain of a novel species in a novel genus, for which the name Vadicella arenosi gen. nov., sp. nov. is proposed.  相似文献   

14.
Eighteen isolates of a Gram-negative, catalase and oxidase-positive, rod-shaped bacterium, recovered from diseased rainbow trout (Oncorhynchus mykiss), were characterized, using a polyphasic taxonomic approach. Studies based on comparative 16S rRNA gene sequence analysis showed that that the eighteen new isolates shared 99.2-100% sequence similarities. Phylogenetic analysis revealed that isolates from trout belonged to the genus Flavobacterium, showing the highest sequence similarities to F. chungangense (98.6%), F. frigidimaris (98.1%), F. hercynium (97.9%) and F. aquidurense (97.8%). DNA-DNA reassociation values between the trout isolates (exemplified by strain 631-08(T)) and five type strains of the most closely related Flavobacterium species exhibited less than 27% similarity. The G+C content of the genomic DNA was 33.0 mol%. The major respiratory quinone was observed to be menaquinone 6 (MK-6) and iso-C(15:0), C(15:0) and C(16:1) ω7c the predominant fatty acids. The polar lipid profile of strain 631-08(T) consisted of phosphatidylethanolamine, unknown aminolipids AL1 and AL3, lipids L1, L2, L3 and L4 and phospholipid PL1. The novel isolates were differentiated from related Flavobacterium species by physiological and biochemical tests. On the basis of the evidence from this polyphasic study, it is proposed that the isolates from rainbow trout be classified as a new species of the genus Flavobacterium, Flavobacterium oncorhynchi sp. nov. The type strain is 631-08(T) (= CECT 7678(T) = CCUG 59446(T)).  相似文献   

15.
Strain CS1T (T = type strain) is a gram-negative, microaerophilic, urease-positive, spiral-shaped bacterium that was isolated from the gastric mucosa of a cat. Additional strains which possessed biochemical and ultrastructural characteristics similar to those of strain CS1T were isolated from the gastric mucosa of cats and dogs. The guanine-plus-cytosine content of the DNA of strain CS1T was 42.5 mol%. The 16S rRNA sequences of strain CS1T, strain DS3 (a spiral-shaped isolate from a dog), and Helicobacter mustelae were determined by direct RNA sequencing, using a modified Sanger method. These sequences were compared with the 16S rRNA sequences of Helicobacter pylori, "Flexispira rappini," Wolinella succinogenes, and 11 species of campylobacters. A dendrogram was constructed based upon sequence similarities. Strains CS1T and DS3 were very closely related (level of similarity, 99.3%). Two major phylogenetic groups were formed; one group consisted of strains CS1T and DS3, H. mustelae, H. pylori, "F. rappini," and W. succinogenes, and the other group contained the true campylobacters. The average level of similarity between members of these two groups was 84.9%. Within the first group, strains CS1T and DS3, H. pylori, and H. mustelae formed a cluster of organisms with an interspecies similarity level of 94.5%. The phylogenetic positions of W. succinogenes and "F. rappini" were just outside this cluster. On the basis of the results of this study, we believe that strains CS1T (= ATCC 49179T) and DS3 represent a new species of the genus Helicobacter, for which we propose the name Helicobacter felis.  相似文献   

16.
Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these species, the isolate was devoid of alpha-galactosidase and -glucosidase and did not grow on maltose, melibiose, raffinose, rhamnose and trehalose. The hypothesis that strain SDG-Mt85-3Db represents a new bacterial species of the Clostridium cluster XVIII was confirmed by DNA-DNA hybridisation experiments. The G+C content of DNA of strain SDG-Mt85-3Db (30.7+/-0.8 mol%) was comparable with that of Clostridium butyricum, the type species of the genus Clostridium. The name Clostridium saccharogumia is proposed for strain SDG-Mt85-3Db (=DSM 17460T=CCUG 51486T). The second isolate, strain ED-Mt61/PYG-s6, was a mesophilic strictly anaerobic Gram-positive regular rod. Based on 16S rRNA gene sequence analysis, its nearest relatives were Clostridium amygdalinum (93.3%), Clostridium saccharolyticum (93.1%) and Ruminococcus productus (93.0%). The isolate differed from these species in its ability to dehydrogenate enterodiol. It also possessed alpha-arabinosidase and -galactosidase and had a higher G+C content of DNA (48.0 mol%). According to these findings, it is proposed to create a novel genus, Lactonifactor, and a novel species, Lactonifactor longoviformis, to accommodate strain ED-Mt61/PYG-s6. The type strain is DSM 17459T (=CCUG 51487T).  相似文献   

17.
Three Gram-negative, motile, coccoid- and ellipsoidal-shaped, non-pigmented, chemoheterotrophic bacteria, designated strains SA4-31, SA4-46 and SA4-48(T), were isolated from Lake Saroma in Japan and subjected to a polyphasic taxonomical study. 16S rRNA gene sequence analysis revealed that the novel isolates could be affiliated to the family Pseudoalteromonadaceae of the order Alteromonadales. The strains shared approximately 99.7-100% sequence similarity with each other and showed 89.5-93.2% similarity with members of the family Pseudoalteromonadaceae with validly published names. The DNA-DNA relatedness among the strains SA 4-31, SA 4-46 and SA 4-48(T) was higher than 80%, a value that is accepted as a phylogenetic definition of one species. The DNA G+C contents of the three strains were 38.7-39.6 mol%. The major isoprenoid quinone was Q-8 and C16:0, C16:1 ω7c, C18:1 ω7c and C12:1 3OH were the major fatty acids. Based on the evidence from the polyphasic taxonomical study, it was concluded that the three strains should be classified as representing a new genus and species of the family Pseudoalteromonadaceae, for which the name Psychrosphaera saromensis gen. nov., sp. nov. (type strain SA4-48(T) =NBRC 107123(T)= KCTC 23240(T)) is proposed.  相似文献   

18.
A novel Janibacter species is described on the basis of phenotypic, chemotaxonomic and genotypic data. Two bacterial strains were isolated in Palau, which were both Gram-positive, catalase-positive bacteria with meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan. The major menaquinone was MK-8(H(4)). Mycolic acids were not detected. The G+C content of the DNA was 70-71 mol%. Comparative 16S rDNA studies of the two isolated strains revealed that they both belonged to the genus Janibacter. DNA-DNA relatedness data revealed that 04PA2-Co5-61(T) and 02PA-Ca-009 belong to the same species, a new species of the genus Janibacter. From these results, Janibacter corallicola sp. nov. is proposed, with the type strain 04PA2-Co5-61(T) (=MBIC 08265(T), DSM 18906(T)).  相似文献   

19.
Strain CO 4–7T was isolated from greenhouse soil used for cultivation of cucumbers in Korea. The 16S rRNA gene sequence of strain CO 4–7T showed the highest sequence similarity with Paenibacillus contaminans CKOBP-6T (94.2%) among the type strains. Strain CO 4–7T was a strictly aerobic, Gram-staining-positive, endospore-forming, and motile rodshaped bacterium. Strain CO 4–7T grew at 10–45°C (optimum, 30°C), at pH 6.0–7.5 (optimum, pH 6.5) and in the presence of 0–5% NaCl (optimum, 0.5%). The DNA G+C content of strain CO 4–7T was 48.5 mol%. It contained MK-7 as the major isoprenoid quinone and anteiso-C15:0 (51.8%), C16:0 (12.7%), and iso-C16:0 (8.6%) as the major fatty acids. The cell wall contained meso-diaminopimelic acid. Based on evidence from our polyphasic taxonomic study, it was concluded that strain CO 4-7T should be classified as a novel species of the genus Paenibacillus, for which, the name Paenibacillus cucumis sp. nov. is proposed. The type strain is CO 4–7T (=KACC 17444T=JCM 19515T).  相似文献   

20.
Two Gram-negative moderately halophilic bacterial strains, designated Ad-1(T) and C-12, were isolated from Aiding salt lake of Xinjiang in China. The novel isolates were subjected to a polyphasic taxonomic study. Cells of these strains were cocci or short rods and motile with polar flagella. Colonies produced brown-red pigment. The isolates grew in the range of 0.5-25% (w/v) NaCl, pH 5.5-10.5 and 4-45°C. Analysis of their 16S rRNA gene sequences indicated that strains Ad-1(T) and C-12 belonged to the genus Halomonas showing 92.7-98.4% similarity with the type species. The isoprenoid quinones of the isolates were Q-9 and Q-8. The major cellular fatty acids were C18:1ω7c, C16:1ω7c/6c, C16:0, C12:0-3OH and C10:0. The DNA G + C contents of strains Ad-1(T) and C-12 were 64.6 and 63.9 mol%, respectively. The DNA relatedness between the two isolates was 89.2%. The similarities of these newly isolated strains with closely related type strains were lower than 35% at the genetic level. Based on phenotypic, chemotaxonomic and genetic characteristics, the representative strain Ad-1(T) is considered to be a novel species of the genus Halomonas, for which the name Halomonas aidingensis sp. nov. is proposed, with Ad-1(T) (= CGMCC 1.10191(T) = NBRC 106173(T)) as the type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号