首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MEF2与肌肉发生   总被引:2,自引:1,他引:1  
程震龙  朱大海  张志谦 《遗传》2002,24(5):581-585
  相似文献   

2.
3.
4.
5.
6.
7.
8.
In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.  相似文献   

9.
Background information. Aging of human skeletal muscle results in a decline in muscle mass and force, and excessive turnover of muscle fibres, such as in muscular dystrophies, further increases this decline. Although it has been shown in rodents, by cross‐age transplantation of whole muscles, that the environment plays an important role in this process, the implication of proliferating aging of the muscle progenitors has been poorly investigated, particularly in humans, since the regulation of cell proliferation differs between rodents and humans. The myogenic differentiation of human myoblasts is regulated by the muscle‐specific regulatory factors. Cross‐talk between the muscle‐specific regulatory factors and the cell cycle regulators is essential for differentiation. The aim of the present study was to determine the effects of replicative senescence on the myogenic programme of human myoblasts. Results. We showed that senescent myoblasts, which could not re‐enter the cell cycle, are still able to differentiate and form multinucleated myotubes. However, these myotubes are significantly smaller. The expression of muscle‐specific regulatory factors and cell cycle regulators was analysed in proliferating myoblasts and compared with senescent cells. We have observed a delay and a decrease in the muscle‐specific regulatory factors and the cyclin‐dependent kinase inhibitor p57 during the early step of differentiation in senescent myoblasts, as well as an increase in the fibroblastic markers. Conclusions. Our results demonstrate that replicative senescence alters the expression of the factors triggering muscle differentiation in human myoblasts and could play a role in the regenerative defects observed in muscular diseases and during normal skeletal‐muscle aging.  相似文献   

10.
11.
12.
In a previous study investigating the effects of low temperature on skeletal muscle differentiation, we demonstrated that C2C12 mouse myoblasts cultured at 30 °C do not express myogenin, a myogenic regulatory factor (MRF), or fuse into multinucleated myotubes. At this low temperature, the myoblasts continuously express Id3, a negative regulator of MRFs, and do not upregulate muscle-specific microRNAs. In this study, we examined if insulin-like growth factor-I (IGF-I) and a stable form of vitamin C (L-ascorbic acid phosphate) could alleviate the low temperature-induced inhibition of myogenic differentiation in C2C12 cells. Although the addition of either IGF-I or vitamin C alone could promote myogenin expression in C2C12 cells at 30 °C, elongated multinucleated myotubes were not formed unless both IGF-I and vitamin C were continuously administered. In human skeletal muscle cells, low temperature-induced blockage of myogenic differentiation was also ameliorated by exogenous IGF-I and vitamin C. In addition, we demonstrated that satellite cells of IGF-I overexpressing transgenic mice in single-fiber culture expressed myogenin at a higher level than those of wild-type mice at 30 °C. This study suggests that body temperature plays an important role in myogenic differentiation of endotherms, but the sensitivity to low temperature could be buffered by certain factors in vivo, such as IGF-I and vitamin C.  相似文献   

13.
14.
15.
Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号