首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age of potato seed-tubers influences protein synthesis during sprouting   总被引:2,自引:0,他引:2  
The effect of seed-tuber age on the ability of tuber tissue to synthesize protein during sprouting was examined. As seed-tuber age advanced from 4 to 32 months (at 4°C, 95% relative humidity), soluble protein concentration of tubers decreased linearly, with a concomitant increase in free amino acid concentration. The age-induced loss of tuber protein may thus be due to increased proteolysis, decreased protein synthesis, or both. Five- and 17-month-old seed-tubers were compared for their ability to incorporate radiolabeled amino acids into soluble protein at equivalent stages of sprout development. Tuber respiration was profiled through each sprouting stage to characterize the physiological status of the seed-tubers prior to incorporation studies. Five-month-old seed-tubers maintained a constant rate of respiration during sprouting. In contrast, respiration of 17-month-old tubers increased as sprout dry matter increased, resulting in a 2- to 3-fold greater respiratory rate from the older tubers, relative to the younger tubers, at similar stages of sprout development. Prior to sprouting, the rate of incorporation of amino acids into trichloroacetic acid-precipitable protein of tissue from 5-month-old tubers was 2. 9-fold higher than that from 17-month-old tubers. More importantly, protein-synthetic capacity of tissue from younger tubers increased about 1. 7-fold during sprout development. Despite the higher respiratory activity and faster total sprout dry matter accumulation from older seed-tubers, protein synthesis remained at a low and constant level through all stages of sprouting. Protein-synthetic capacity thus declines with advancing tuber age, and this may contribute to reduced growth potential during the latter stages of establishment by affecting the ability of seed-tubers to synthesize enzymes involved in mobilization and translocation of tuber reserves to developing plants.  相似文献   

2.
Kumar G  Knowles NR 《Plant physiology》1993,102(1):115-124
Previous research has shown that cell membranes of potato (Solanum tuberosum L. cv Russet Burbank) seed-tubers lose integrity between 7 and 26 months of storage (4[deg]C, 95% relative humidity), and this loss coincides with a significant decrease in growth potential. The age-induced decline in membrane integrity is apparently due to increased peroxidative damage of membrane lipids. Malondialdehyde (MDA) and ethane concentrations (sensitive markers of lipid peroxidation and membrane damage) increased in seed-tuber tissues with advancing age. Moreover, in vivo ethane production from discs of cortex tissue from 13- and 25-month-old seed-tubers was 87% greater (on average) than that from discs from 1-month-old tubers. Calcium suppressed ethane production from all ages of tissue discs, and the effect was concentration dependent. Linoleic acid enhanced ethane production from 5- and 17-month-old tubers by 61 and 228%, respectively, suggesting that older tissue may contain a higher free-radical (FR) titer and/or lower free polyunsaturated fatty acid content. In addition, throughout plant establishment, the internal ethane concentration of older seed-tubers was 54% higher than that of younger seed-tubers. MDA concentration of tuber tissue declined by about 65% during the initial 7 months of storage and then increased 267% as tuber age advanced to 30 months. The age-induced trend in tuber reducing sugar concentration was similar to that of MDA, and the two were linearly correlated. The age-dependent increase in reducing sugars may thus reflect peroxidative degeneration of the amyloplast membrane, leading to increased starch hydrolysis. Compared with 5-month-old seed tubers, 17- and 29-month-old seed-tubers had significantly higher levels of lipofuscin-like fluorescent compounds (FCs), which are produced when MDA reacts with free amino acids. Age-dependent increases in MDA, ethane, and FCs were not associated with higher activities of phospholipase and lipoxygenase in tissue from older tubers. In fact, 8-month-old seed-tubers had significantly higher activities of these enzymes than 20-month-old seed-tubers. However, the activities of superoxide dismutase, peroxidase, and catalase in 20-month-old tubers were substantially higher out of storage, and increased at a faster rate during plant establishment, than in 8-month-old seed-tubers. Collectively, these results suggest that a gradual build-up of FRs leads to peroxidative damage of membrane lipids during aging of potato seed-tubers.  相似文献   

3.
The relative growth rate of plants from 7-month-old potato seed-tuberswas significantly greater (37%) than that from 19-month-oldseed-tubers. To determine if loss in seed-tuber phospholipidcontent, and thus membrane integrity, is associated with age-reducedvigour, changes in fatty acyl composition of free fatty acid(FA) and phospholipid fractions were characterized in both seed-tuberages over a 19-d interval of plant establishment. The concentration(nmol g d. wt–1) of saturated and unsaturated FA withinthe phosphatidylcholine (PC) and phosphatidylethanolamine (PE)pools decreased an average of 27-fold over the initial 7 d ofestablishment. This decline was followed by a 19-fold (on average)increase to day 19. The change with time in saturated and unsaturatedFA concentration within the free FA pool was quadratic, butwas opposite to that displayed by the two phospholipid pools.The close correlation in fatty acyl content between the phospholipidand free FA fractions suggested high phospholipase activityduring early plant establishment. The double-bond index (DBI)of all three lipid fractions decreased from day 0 to 7 and thenincreased to day 19. More importantly, in older seed-tubers,the minima in phospholipid DBI and content occurred significantlyearlier (on a plant developmental scale) than in younger seed-tubers.A premature decrease in DBI is indicative of loss of membraneintegrity in potato, and undoubtedly has implications for efficiencyof substrate mobilization and energy metabolism during plantestablishment. Potatoes (Solanum tuberosum L.), seed-tuber age, lipids, plant growth potential  相似文献   

4.
5.
A study was conducted to characterize patterns of mobilizationand translocation of seedpiece nitrogen (N) from single-eyeseedcores cut from 5 and 17-month-old potato seed-tubers. Differencesin mobilization efficiency were related to age-induced, morphologicaldifferences in plant development. Seedcores from older seed-tuberssprouted earlier and produced an average of 6.6 shoots per eyecompared to a single shoot from younger seed-tubers. Shoot vigour(d. wt per shoot) from 17-month-old was four-fold lower thanthat from 5-month-old seed-tubers following 25 d of growth.However, total shoot dry matter from older seedcores was two-foldgreater than that from younger seedcores. Differences in vigourper shoot were not explained entirely by differences in shootnumber. Rates and absolute amounts of free amino, soluble protein andtotal-N mobilized from 17-month-old seedcores were greater thanfrom younger seedcores. However, a higher degree of intersproutcompetition from older seedcores translated into a lower amountof mobilized N available to support growth of individual shoots.Furthermore, before seedcore N became limiting, concentrationof foliar N (mg g d. wt–1) from older seedcores was lowercompared to that from younger seedcores, indicating a lowersink strength for N per unit increase in dry weight of the multipleshoots. Seedpiece N did not appear to limit shoot growth fromyounger seedcores. Age-induced loss of vigour on an individualshoot basis may thus be related to decreased sink strength andincreased competition among multiple shoots for seedcore N. Potatoes (Solanum tuberosum L.), seed-tuber age, nitrogen mobilization, plant growth potential  相似文献   

6.
We studied the effects of chloride salinity (300 and 500 mM NaCl) on the content of free polyamines (PAs) from putrescine (Put) family in Mesembryanthemum crystallinum L. leaves and roots. The contents of Put and spermidine (Spd) in leaves increased temporarily, achieving the highest values on the third day of salinity treatment; thereafter (by days 7–14), they dropped sharply. The content of spermine (Spm) increased gradually, and its high level was maintained until the end of experiment. The dynamics of Spm accumulation in leaves under salinity conditions resembled that of phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the water-saving CAM pathway of photosynthesis. This indicates indirectly the involvement of Spm in the common ice plant adaptation to salinity. A decrease in the molar ratios of Spd to Spm in the leaves under salinity conditions could point to the acceleration of Spm biosynthesis (accumulation) during plant adaptation, whereas the levels of Spm precursors, Put and Spd, did not increase. This phenomenon could be explained by an accelerated conversion of Spd into Spm, an active liberation of free Spm from its conjugates, or changes in the rates of studied PA biosynthesis and degradation under salinity. At the same time, the intracellular concentration of ethylene rose under these conditions. It was supposed and then demonstrated, that the pathway of ethylene biosynthesis and that of the synthesis of Put family PAs compete under severe salinity conditions. This competition might be based on the disturbances in sulfur metabolism and a decrease in the methionine content, an immediate precursor of S-adenosyl-L-methionine.  相似文献   

7.
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse ornithine decarboxylase cDNA either under the control of a constitutive (in poplar) or an inducible (in Arabidopsis) promoter. The transgenic poplar cells produced and accumulated 8–10 times higher amounts of Put than the non-transgenic cells, whereas the Arabidopsis seedlings accumulated up to 40-fold higher amounts of Put; however, in neither case the cellular Spd or Spm increased consistently. The rate of Spd and Spm catabolism and the half-life of cellular Spd and Spm were measured by pulse-chase experiments using [14C]Spd or [14C]Spm. Spermidine half-life was calculated to be about 22–32 h in poplar and 52–56 h in Arabidopsis. The half-life of cellular Spm was calculated to be approximately 24 h in Arabidopsis and 36–48 h in poplar. Both species were able to convert Spd to Spm and Put, and Spm to Spd and Put. The rates of Spd and Spm catabolism in both species were several-fold slower than those of Put, and the overproduction of Put had only a small effect on the overall rates of turnover of Spd or Spm. There was little effect on the rates of Spd to Spm conversion as well as the conversion of Spm into lower polyamines. While Spm was mainly converted back to Spd and not terminally degraded, Spd was removed from the cells largely through terminal catabolism in both species.  相似文献   

8.
Studies were conducted to characterize the effect of advanced potato (Solanum tuberosum L.) seed-tuber age on plant growth potential and whole-plant morphology. Plant growth from single-eye seedcores from 5- to 18-month old `Russet Burbank' seedtubers was compared. Loss in apical dominance was apparent with advanced age. On a per-core basis, the amount of plant dry weight was equal for the two ages at 30 days from planting. However, individual plants from older cores displayed reduced shoot, root and leaf dry weights, leaf area, and leaf number. These effects reflected altered dry-matter partitioning and contributed to an overall change in plant morphology with advanced age. On a total seedcore basis, relative growth rate of plants from older seedcores was greater than that from younger seedcores over the 30 day growth interval. Leaf area ratio was also greater for plants from the older seedcores; however, unit leaf rate was not affected by tuber age and plants from both young and old seedcores assimilated dry matter at the same rate. Age-induced differences in growth indices reflected differences in the degree of plant differentiation over the interval of study. Treating younger seedcores with 1-naphthaleneacetic acid (NAA) prior to planting inhibited overall plant growth. In older cores, NAA stimulated root growth, restored apical dominance, decreased leaf number per plant, and increased average leaf area per leaf. In short, NAA altered the morphology of plants growing from older seedcores to more closely resemble that of plants growing from younger seedcores. While auxin significantly altered plant form, vigor of plants from older seedcores was not fully restored by auxin treatment, indicating that age-reduced vigor of potato seed-tubers is not solely mediated by auxin.  相似文献   

9.
During the early stages of growth, developing sprouts rely heavilyupon tuber carbohydrate reserves. Strong sprouts are producedfrom young potato (Solaman tuberosum L.) seed-tubers, whereastubers of advanced physiological age produce sprouts with reducedvigour. Single-eye seedcores from 7- and 19-month-old seed-tuberswere sprouted in order to study the effect of tuber age on carbohydratereserve mobilization. Following 24 d of growth, the same amountof total shoot dry matter was produced from both ages of seedcores.However, d. wt of individual shoots from older seedcores was93 % lower than that from younger cores, reflecting a significantloss in apical dominance with age. Furthermore, core d. wt lossper unit gain in plant d. wt was greater from 19-month-old seedcores,indicating an age-related decrease in the efficiency of reservemobilization over the growth interval. During sprouting, ratesof starch hydrolysis and subsequent increases in total solublecarbohydrates were similar for both tuber ages. Reducing sugars(mg g d. wt–1) accumulated faster in older than in youngercores; non-reducing sugars (mainly sucrose) decreased 53% inolder seedcores over the 24 d growth interval. Non-reducingsugar content (mg g d. wt–1, mg core–1) of youngercores remained constant. The results suggest that older coresare either less efficient at converting glucose to sucrose (themain translocatable carbohydrate in potatoes) or have higherrates of sucrose hydrolysis (e.g. increased invertase activity)compared with younger tuber tissues during sprouting Potatoes (Solanum tuberosum L.), seed-tuber age, carbohydrate mobilization, plant growth potential  相似文献   

10.
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.  相似文献   

11.
Polyamines are known to influence a variety of growth and developmental processes in higher plants. Tissue browning seriously reduces in vitro plant regeneration in pine species by decreasing the levels of antioxidant enzymes and polyamines in tissue cultures. In the present investigation, the effect of exogenously added polyamines on recovering browning tissues into normal callus cultures and on improving plant regeneration was examined in Virginia pine ( Pinus virginiana Mill.). Among the polyamines administered, 1.5 m M putrescine (Put), 1.5 m M spermidine (Spd), or 1.5 m M spermine (Spm) alone resulted in a 19.55%, 18.92%, and 1.45%, respectively, recovering of browning tissues into normal callus cultures in 5 weeks. A combination of Put with Spd or Spm did not result in an increase of recovering rate, compared to the Put or Spd alone. Exogenously added 1.5 m M Put, 1.5 m M Spd, 1.5 m M Put + 1.5 m M Spd, or 1.5 m M Put + 1.5 m M Spm recovers browning tissues into normal callus cultures by increasing the activity of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR) and superoxide dismutase (SOD) and by decreasing lipid peroxidation. Exogenously added 1.5 m M Put, 1.5 m M Spd, 1.5 m M Put + 1.5 m M Spd, or 1.5 m M Put + 1.5 m M Spm significantly improve the growth rate of callus cultures, shoot formation, and rooting adventitious shoots. These results demonstrated that exogenously added polyamines recover browning tissues into normal callus cultures by decreasing oxidative damage and improving plant regeneration by acting as plant growth substances.  相似文献   

12.
Distribution of biogenic amines—the diamine putrescine (Put), triamine spermidine (Spd), and tetraamine spermine (Spm)—differs between species with Put and Spd being particularly abundant and Spm the least abundant in plant cells. These amines are important for cell viability and their intracellular levels are tightly regulated, which have made it difficult to characterize individual effects of Put, Spd and Spm on plant growth and developmental processes. The recent transgenic intervention and mutational genetics have made it possible to stably alter levels of naturally occurring polyamines and study their biological effects. We bring together an analysis of certain metabolic changes, particularly in amino acids, to infer the responsive regulation brought about by increased diamine or polyamine levels in actively growing poplar cell cultures (transformed with mouse ornithine decarboxylase gene to accumulate high Put levels) and ripening tomato pericarp (transformed with yeast S-adenosylmethionine decarboxylase gene to accumulate high Spd and Spm levels at the cost of Put). Our analysis indicates that increased Put has little effect on increasing the levels of Spd and Spm, while Spd and Spm levels are inter-dependent. Further, Put levels were positively associated with Ala (α and β), Ile and GABA and negatively correlated with Gln and Glu in both actively growing poplar cell cultures and non-dividing tomato pericarp tissue. Most amino acids showed positive correlations with Spd and Spm levels in actively growing cells. Collectively these results suggest that Put is a negative regulator while Spd–Spm are positive regulators of cellular amino acid metabolism.  相似文献   

13.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

14.
The expression of totipotency in plant protoplasts is a complex developmental phenomenon and is affected by genetic and physiological factors. Polyamines (PAs) are known to be involved in a variety of growth and developmental processes in higher plants, as well as in adaptation to stresses. In this study, we present the homeostatic characteristics of the endogenous PA putrescine (Put), spermidine (Spd), and spermine (Spm) in totipotent (T) and non-totipotent (NT) tobacco protoplasts and in recalcitrant (R) grapevine protoplasts. T-tobacco protoplasts, with high division rates, have the highest level of endogenous PAs. In these protoplasts, the soluble-hydrolyzed fraction predominates and increases, and the insoluble-hydrolyzed fraction also increases, whereas soluble (S) PAs decrease rapidly during culture. The isolation process contributes to the increased Put levels, which are higher in freshly isolated NT-tobacco protoplasts than in T-protoplasts. During culture, total Put predominates over Spd and Spm, and the highest accumulation is found in T-protoplasts. Ornithine decarboxylase and arginase activities both increase in T-protoplasts, whereas arginine decarboxylase activity causes Put accumulation in NT-tobacco protoplasts. R-grapevine protoplasts show a different PA profile, mostly due to the lower PA content, the higher S-fraction, and the higher ratio of Spm to total PAs. The data suggest that the levels and metabolism of the intracellular PAs could be related to the expression of totipotency of plant protoplasts.  相似文献   

15.
16.
Common polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), are cationic compounds known as beneficial factors for many cellular processes including cell division, proliferation, differentiation, and stress response in all living organisms. Effects of exogenous Spm on the protective responses of Synechocystis sp. PCC 6803 exposed to UVA were investigated. The presence of 0.5 mM Spm in the culture medium significantly reduced cell growth after 60 min under white light condition but protected the cells after growing for 60 min under UVA. The stress-tolerant response of Synechocystis cells represented by the ratio of putrescine/spermidine (Put/Spd) showed about a 6-fold increase after 60 min UVA in the presence of Spm. In addition, those levels of chlorophyll a, carotenoids, and photosynthetic oxygen evolution were increased by Spm supplementation in UVA-treated cells. Exogenous Spm induced the activity of catalase but not superoxide dismutase in cells under UVA treatment. On the other hand, Spm treatment enabled cells to apparently decrease the intracellular free radical H2O2 and malonaldehyde (MDA) levels. Overall results suggested that Spm supplementation could protect Synechocystis sp. PCC 6803 cells via the increase of Put/Spd ratio and the reduction of both H2O2 and MDA levels in conjunction with the induction of catalase activity. Interestingly, UVA-treated cells as compared to non-treated cells with exogenous Spm showed a decrease of Spm with an increase of Put and no change in Spd. This suggested the back conversion of Spm to Spd and finally to Put as cellular mechanism in response to UVA.  相似文献   

17.
Exogenous polyamines enhance copper tolerance of Nymphoides peltatum   总被引:2,自引:0,他引:2  
Wang X  Shi G  Xu Q  Hu J 《Journal of plant physiology》2007,164(8):1062-1070
The protective effects of polyamines (PAs) against copper (Cu) toxicity were investigated in the leaves of Nymphoides peltatum. Cu treatment increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put ratio in leaves. Exogenous application of Spd or Spm markedly reversed these Cu-induced effects for all three PAs and partially restored the (Spd+Spm)/Put ratio in leaves. It also significantly enhanced the level of proline, retarded the loss of soluble protein, decreased the rate of O2*- generation and H2O2 content, and prevented Cu-induced lipid peroxidation. Furthermore, exogenous Spd and Spm reduced the accumulation of Cu and effectively maintained the balance of nutrient elements in plant leaves under Cu stress. These results suggest that exogenous application of Spd or Spm can enhance the tolerance of N. peltatum to Cu by increasing the levels of endogenous Spd and Spm as well as the (Spd+Spm)/Put ratio.  相似文献   

18.
In somatic embryogenesis (SE) of conifers, the inability of many embryogenic cell lines to form well-developed somatic embryos may results from failure and constraints during the transition of proembryogenic masses (PEMs) to early somatic embryos. In the present work, we propose the inclusion of a preculture and prematuration steps looking at enhancing PEM III-to-early somatic embryos transition. It was further hypothesized that these results would correlate with the contents of endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamines (PA). To test these hypotheses, the embryogenic culture was subjected to preculture with fluridone (FLD) and prematuration treatments with different combinations of carbon source and polyethylene glycol (PEG). The frequency of PEM III was increased after FLD preculture and the contents of IAA and ABA decreased, while the contents of PA increased. Putrescine (Put) was the most abundant PA present at this stage, followed by spermidine (Spd) and spermine (Spm). In early embryogenesis, prematuration treatments supplemented with maltose or lactose plus PEG enhanced the PEM III-to-early somatic embryos transition. IAA and ABA contents increased at this stage, while a decrease of the total free PA levels was observed. Put was the most abundant PA, followed by Spd and Spm, mainly in the treatment supplemented with PEG. This resulted in a decrease of PA ratio (Put/Spd + Spm) and, hence, PEM III-to-early somatic embryos transition. It was concluded that the preculture with FLD and prematuration treatments promote the PEM III-to-early somatic embryos transition throughout the whole early developmental process in Araucaria angustifolia.  相似文献   

19.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

20.
The polyamines (PA) putrescine (Put), spermidine (Spd), and spermine (Spm) were measured during 3 weeks exposure to cold hardening (15.6°C day and 4.4°C night) and nonhardening (32.2°C day and 21.1°C night) temperature regimes in three citrus cultivars: sour orange (SO) (Citrus aurantium L.), `valencia' (VAL) (Citrus sinensis L. Osbeck), and rough lemon (RL) (Citrus jambhiri Lush). The changes in PA were compared to the amount of free proline, percent wood kill and percent leaf kill. A 2- to 3-fold increase in Spd concentrations were observed in hardened RL, SO, and VAL leaves compared to nonhardened leaves. Spermidine reached its highest level of approximately 200 nanomoles per gram fresh weight after 1 week of acclimation in both SO and VAL leaves, while RL spermidine content continued to increase up to the third week of acclimation. Spm levels in acclimated VAL and RL leaves increased 1- to 4-fold. However, SO leaves Spm content decreased with acclimation. Putrescine levels in SO and VAL increased 20 to 60% during the first 2 weeks of acclimation then declined after 3 weeks. RL putrescine content was not affected by cold acclimation. The data presented here provided direct relationship between increased Spd concentration and citrus cold hardiness. Free proline was 3- to 6-fold higher in acclimated than in nonacclimated trees. Results also demonstrate that in acclimated versus nonacclimated citrus trees the absolute amount rather than the ratio of increase in free proline is more important in predicting their ability to survive freezing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号