首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-two ethanolic extracts of thirty-six Rwandan medicinal plants were investigated for their influence on complement-mediated hemolysis. The plants were selected on the base of their ethnomedicinal use in infections and autoimmune diseases. Eight plant extracts showed an inhibitory activity against the classical pathway of the complement system and ten plant extracts against the alternative pathway. Three plant extracts exhibited an interesting activity against both pathways, i.e. Aspilia pluriseta, Coleus kilimandschari, and Macaranga kilimandscharica (leaves and stem). Further study indicated that the complement inhibitory activity was not caused by chelation of bivalent cations or by direct action on the target erythrocytes.  相似文献   

2.
3.
4.
A novel antiviral agent, fattiviracin FV-8, purified from the culture broth of Streptomyces microflavus strain No. 2445, showed potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV), and influenza A and B viruses. The action mechanism of fattiviracin FV-8 against HIV-1 was examined. As a result, the agent was thought to act on HIV-1 particles directly without lysis of the particles, and it affords the inhibition of viral entry into the host cells.  相似文献   

5.
6.
Antiviral inhibition of the HIV-1 capsid protein   总被引:9,自引:0,他引:9  
  相似文献   

7.
The oligomerization of HIV-1 Gag and Gag-Pol proteins, which are assembled at the plasma membrane, leads to viral budding. The budding generally places the viral components under non-reducing conditions. Here the effects of non-reducing conditions on Gag structures and viral RNA protection were examined. Using different reducing conditions and SDS-PAGE, it was shown that oligomerized Gag possesses intermolecular covalent bonds under non-reducing conditions. In addition, it was demonstrated that the mature viral core contains a large amount of covalent bonded Gag multimers, as does the immature core. Viral genomic RNA becomes sensitive to ribonuclease in reducing conditions. These results suggest that, under non-reducing conditions, covalent bonded Gag multimers are formed within the viral particles and play a role in protection of the viral genome.  相似文献   

8.
The nucleocapsid (NC) protein of the human immunodeficiency virus-1 (HIV-1) plays an important role in the encapsidation of viral RNA and assembly of viral particle. Since the NC protein is resistant for mutation, it might be an excellent target for the anti-viral therapy. RNA aptamers that bind to the mature form of the NC protein were isolated from a RNA library. Surface plasmon resonance measurement and gel shift assay showed that the RNA aptamers specifically bind to the NC protein with high affinity and compete for the psi RNA binding to the NC protein. Mapping of the RNA aptamer showed at least two sites for the protein binding, suggesting a multiple and cooperative binding by the NC to RNA. In addition, the circular form of RNA avidly binds to the NC protein as a linear counter does. Stabilized RNA aptamer is expected to act as an inhibitor for the viral packaging.  相似文献   

9.
We examined the effects of electrical stimulation on HIV-1-adsorbed MAGIC-5 (MAGIC-5/HIV-1) cells and unadsorbed MAGIC-5 (MAGIC-5) cells. When MAGIC-5 cells were stimulated by a constant d.c. potential of 1.0 V (vs Ag/Agcl) immediately after HIV-1LAI infection, infectivity was more affected by electrical stimulation than by cell membrane damage. In particular, after application of potential at 1.0 V for 5 min, about 1% of the membranes of the MAGIC-5/HIV-1LAI cells were damaged, but the infectivities of both HIV-1LAI and HIV-1NL43-luc cells decreased about 37 and 44%, respectively (p < 0.05). After application of potential at 1.0 V for 5 min, the mean fluorescence intensities (MFIs) of highly reactive oxygen species (hROS) and nitric oxide (NO) in MAGIC-5/HIV-1NL43-Luc cells were significantly increased compared with that of unstimulated MAGIC-5/HIV-1NL43-Luc cells (p < 0.01). However, the MFIs of hROS and NO in MAGIC-5 cells were also increased, to the same level, by electrical stimulation for 5 min. These results suggest that HIV-1 adsorbed onto or invading cells is damaged by direct or indirect effects of electrical stimulation, resulting in a decrease in HIV-1 infectivity. It is also suggested that hROS and NO induced by electrical stimulation are important factors for inhibiting HIV-1 infection.  相似文献   

10.
The human immunodeficiency virus type-1 regulatory protein Rev is absolutely required for the production of viral structural proteins. Splice sites have been seen to function ascis-acting repressor sequendes (CRS) and inhibit expression of the Rev-dependent RNAs. In order to analyze the role of a splice donor in Rev dependence, the wild-type 5 splice donor of HIV-1 was mutated in the context of othergag sequences. Following transient transfection, RNA expression by RT-PCR was analyzed. The unspliced RNA produced by the mutant construct still required Rev for the cytoplasmic accumulation of the RNA. Despite deletion of the wild-type 5 splice donor and thetat splice acceptor was used. A cryptic splice donor was identified by PCR and subsequent cloning of the spliced RNA. The cryptic site is 5/9 to the consensus sequence and located immediately downstream of the initiation codon (ATG) for Gag. Analysis of the RNA product containing the cryptic splice donor revealed that the Rev was required for the cytoplasmic accumulation of unspliced RNA, while spliced RNA was Rev independent. Transfection of a wild-type construct also demonstrated usage of the cryptic splice donor. These results indicate that a cryptic splice donor can be activated when the wild-type splice donor is inactivated and that the cryptic splice donor may retain Rev regulation. The findings also suggest the potential for cryptic splice sites to serve as CRS in the determining the Rev dependence of viral RNAs.  相似文献   

11.
In this report, we describe a human immunodeficiency virus type-1 (HIV-1)-infected promyelocytic cell line, OM, derived from HL-60 cells. Although the OM cell line was biologically cloned twice, the pattern of HIV-1 expression during culture appeared analogous to a classical acute spreading infection and was inhibited by both azidothymidine and recombinant soluble CD4 treatment. The number of OM cells actually expressing HIV-1 at the beginning of culture was 0%, reached a peak of nearly 100% at 6 weeks, and then fell to less than 10% HIV-1+ cells by 10 weeks. Clonal analysis of the surviving cells verified that stable HIV-1+ OM cells resulted from the spreading infection. Southern analysis confirmed the transmission of HIV-1 through these OM cultures and the occurrence of stable clones which resulted. The initial percentage of OM cells actually harboring the HIV-1 genome was less than 0.1%, indicating nonfaithful transmission of an unintegrated HIV-1 genome during clonal expansion. These results demonstrate that extrachromosomal HIV-1 DNA can contribute to the spread of HIV-1 infection and give rise to cells which have stably integrated HIV-1 provirus.  相似文献   

12.
Macrophages or microglial cells are the major target cells for HIV-1 infection in the brain. The infected cells release neurotoxic factors that may cause severe neuronal cell damage, especially in the basal ganglia and hippocampus. In this study, we used rat OHC to examine the region-specific neuronal cell damage caused by HIV-1-infected macrophages. When OHC was cocultured with HIV-1-infected MDM, we found that neuronal cells at the GCL of the DG were preferentially killed via apoptosis, and that projection of MF from GCL to PCL of the CA3 region was severely disturbed. We marked precursor cells around the DG region by using an EGFP-expressing retrovirus vector and found that these cells lost the ability to differentiate into neurons when exposed to HIV-1-infected MDM. In the DG, new neurons are normally incorporated into GCL or PCL, while in the presence of HIV-1-infected MDM, mature neurons failed to be incorporated into those layers. These data indicate that the neurotoxic factor(s) released from HIV-1-infected macrophages impede(s) neuronal cell repair in brain tissue. This suggests that DG is the region of the hippocampus most vulnerable to neuronal damage caused by HIV-1 infection, and that its selective vulnerability is most likely due to the highly active neurogenesis that takes place in this region.  相似文献   

13.

Background

gp340, a member of scavenger receptor cysteine rich family encoded by Deleted in Malignant Brain Tumors 1 (DMBT1), is an important component in innate immune defense. The first scavenger receptor cysteine rich domain (SRCR1) of gp340 has been shown to inhibit HIV-1 infection through binding to the N-terminal flank of the V3 loop of HIV-1 gp120.

Results

Through homology modeling and docking analysis of SRCR1 to a gp120-CD4-X5 antibody complex, we identified three loop regions containing polar or acidic residues that directly interacted with gp120. To confirm the docking prediction, a series of over-lapping peptides covering the SRCR1 sequence were synthesized and analyzed by gp120-peptide binding assay. Five peptides coincide with three loop regions showed the relative high binding index. An alanine substitution scan revealed that Asp34, Asp35, Asn96 and Glu101 in two peptides with the highest binding index are the critical residues in SRCR1 interaction with gp120.

Conclusion

We pinpointed the vital gp120-binding regions in SRCR1 and narrowed down the amino acids which play critical roles in contacting with gp120.  相似文献   

14.
This review presents information from several studies that have demonstrated the antiviral activity of extracts (Andrographis paniculata, Artemisia annua, Artemisia afra, Cannabis sativa, Curcuma longa, Echinacea purpurea, Olea europaea, Piper nigrum, and Punica granatum) and phytocompounds derived from medicinal plants (artemisinins, glycyrrhizin, and phenolic compounds) against SARS-CoV-2. A brief background of the plant products studied, the methodology used to evaluate the antiviral activity, the main findings from the research, and the possible mechanisms of action are presented. These plant products have been shown to impede the adsorption of SARS-CoV-2 to the host cell, and prevent multiplication of the virus post its entry into the host cell. In addition to antiviral activity, the plant products have also been demonstrated to exert an immunomodulatory effect by controlling the excessive release of cytokines, which is commonly associated with SARS-CoV-2 infections.  相似文献   

15.
Four inhibitors of polyamine biosynthetic pathways were tested for their effect on HIV-1 replication in phytohemagglutinin-stimulated human peripheral blood mononuclear cells. Methyl acetylenic putrescine (MAP) and -monofluoromethyldehydroornithine methyl ester, irreversible inhibitors of ornithine decarboxylase, inhibited the production of p24 antigen in phytohemagglutinin-stimulated peripheral blood mononuclear cells by clinical HIV-1 strains isolated from HIV-infected patients with IC50 values of about 1–2 µM. 5-{(Z)-4-amino-2-butenyl]methylamino}-5-deoxyadenosine (MDL 73811), an enzyme-activated irreversible inhibitor of S-adenosyl-L-methionine (AdoMet) decarboxylase, also inhibited the production of p24 antigen by HIV-1 strains in peripheral blood mononuclear cells with IC50 values of 1–2 µM. The least potent was 1-aminoxyethylamine which is another inhibitor of AdoMet decarboxylase. MAP showed the best therapeutic index of 500–1,000.  相似文献   

16.
17.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

18.
Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).  相似文献   

19.
This study was carried out to evaluate the antifungal potential of water and ethanol extracts from aerial parts of five wild medicinal plants collected from Sinai Peninsula, Egypt, and the extracts were tested in vitro and in vivo against Phytophthora infestans, the causal agent of late blight disease of tomato. The five wild medicinal plants used for the study were Asclepias sinaica, Farsetia aegyptia, Hypericum sinaicum, Phagnalon sinaicum and Salvia aegyptiaca. Ethanol extracts were more effective on the pathogen than water extracts at all concentrations used. Water and ethanol extracts of all plants tested reduced mycelial growth and inhibited spore germination of the pathogen with varying degrees. Water and ethanolic extracts also reduced the disease infection with pathogen comparing with control in detached leaves technique. In all experiments, extracts of A. sinaica and F. aegyptia were most effective on the pathogen than other plant extracts. In plot experiment, the water and ethanolic extracts of A. sinaica and F. aegyptia gave the most reduction of late blight disease severity comparing with control. Also, data indicated that after the application of plant extracts, there was an increase in fruit yield of tomato corresponding with the reduction of disease severity . Scanning electron microscopy revealed a negative alteration of pathogen hyphae treated with A. sinaica extract at 20%. This concentration of the same plant extract also reflected in dramatic changes in the cyto-morphology of pathogen hyphae as observed by transmission electron microscopy. These changes resulted in an increase in vacuolisation and lipid contents with consequent reduction of cytoplasm with alteration of cell wall and plasmalemma. The overall results suggested that the use of these Egyptian wild medicinal plant extracts was promising, effective and environment-friendly management measure against Phytophthora blight of tomato and thus, may be used in the production of organically grown vegetables.  相似文献   

20.
Vpr, an accessory gene product of HIV-1, is incorporated into cells when added to the culture medium. Via such function Vpr has been shown to transduce a protein into cells that is expressed as a chimeric protein with Vpr. The domain required for protein transduction, however, remained to be clarified. Here we identified a sequence encompassing 52-78 amino acids of Vpr (C45D18) that enables nuclear trafficking of proteins. When chemically synthesized C45D18 was added to the culture medium of human cord blood mononuclear (CBMN) cells, most cells became positive for the incorporated C45D18. Furthermore, recombinant proteins conjugated with the C45D18 were efficiently transduced and transported to regions corresponding to the nucleus. Incorporation of C45D18-conjugated protein was observed within a few hours after addition of the protein, independent of cellular growth. Although it is well known that Tat-derived peptide has a transducing activity, C45D18 was more active than Tat peptide for trafficking proteins into cells. Taking together with results from FACS analysis revealing that more than 90% of CBMN cells were positive for X-gal staining after treatment of C45D18-conjugated beta-galactosidase, we propose that C45D18 translocates bioactive macromolecules directly into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号