首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

2.
Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.  相似文献   

3.
SecB is a molecular chaperone that functions in bacterial post-translational protein translocation pathway. It maintains newly synthesized precursor polypeptide chains in a translocation-competent state and guides them to the translocon via its high-affinity binding to the ligand as well as to the membrane-embedded ATPase SecA. Recent advances in elucidating the structures of SecB have enabled the examination of protein function in the structural context. Structures of SecB from both Haemophilus influenzae and Escherichia coli support the early two-subsite polypeptide-binding model. In addition, the detailed molecular interaction between SecB and SecA was revealed by a structure of SecB in complex with the C-terminal zinc-containing domain of SecA. These observations explain the dual role of SecB plays in the translocation pathway, as a molecular chaperone and a specific targeting factor. A model of SecB-SecA complex suggests that the binding of SecA to SecB changes the conformation of the polypeptide binding sites in the chaperone, enabling transfer of precursor polypeptides from SecB to SecA. Recent studies also show the presence of a second zinc-independent SecB binding site in SecA and the new interaction might contribute to the function of SecB.  相似文献   

4.
Chaperone proteins bind to newly synthesized polypeptides and assist in various assembly reactions. The Escherichia coli chaperone protein SecB binds precursors of exported proteins and assists in export. In vitro, SecB can bind to many unfolded proteins. In this report, we demonstrate that SecB binding in vivo is highly selective; the major polypeptides that are bound by SecB are nascent precursors of the exported proteins maltose-binding protein (MBP), LamB, OmpF, and OmpA. These results support the hypothesis that the primary physiological function of SecB is to stimulate protein export. By interacting with nascent polypeptides, SecB probably stimulates their cotranslational association with the membrane-bound protein translocation apparatus.  相似文献   

5.
SecB, a small tetrameric chaperone in Escherichia coli, facilitates export of precursor polypeptides from the cytoplasm to the periplasmic space. During this process, SecB displays two modes of binding. As a chaperone, it binds promiscuously to precursors to maintain them in a non-native conformation. SecB also demonstrates specific recognition of, and binding to, SecA. SecB with the precursor tightly bound enters an export-active complex with SecA and must pass the ligand to SecA at the translocon in the membrane. Here we use variants of SecA and SecB to further probe these interactions. We show that, unexpectedly, the binding between the two symmetric molecules is asymmetric and that the C-terminal alpha-helices of SecB bind in the interfacial region of the SecA dimer. We suggest that disruption of this interface by SecB facilitates conformational changes of SecA that are crucial to the transfer of the precursor from SecB to SecA.  相似文献   

6.
The chaperone protein SecB is dedicated to the facilitation of export of proteins from the cytoplasm to the periplasm and outer membrane of Escherichia coli. It functions to bind and deliver precursors of exported proteins to the membrane-associated translocation apparatus before the precursors fold into their native stable structures. The binding to SecB is characterized by a high selectivity for ligands having nonnative structure but a low specificity for consensus in sequence among the ligands. A model previously presented (Randall LL, Hardy SJS, 1995, Trends Biochem Sci 20:65-69) to rationalize the ability of SecB to distinguish between the native and nonnative states of a polypeptide proposes that the SecB tetramer contains two types of subsites for ligand binding: one kind that would interact with extended flexible stretches of polypeptides and the other with hydrophobic regions. Here we have used titration calorimetry, analytical ultracentrifugation, and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to obtain evidence that such distinguishable subsites exist.  相似文献   

7.
SecB, a molecular chaperone involved in protein export in Escherichia coli, displays the remarkable ability to selectively bind many different polypeptide ligands whose only common feature is that of being nonnative. The selectivity is explained in part by a kinetic partitioning between the folding of a polypeptide and its association with SecB. SecB has no affinity for native, stably folded polypeptides but interacts tightly with polypeptides that are nonnative. In order to better understand the nature of the binding, we have examined the interaction of SecB with intermediates along the folding pathway of maltose-binding protein. Taking advantage of forms of maltose-binding protein that are altered in their folding properties, we show that the first intermediate in folding, represented by the collapsed state, binds to SecB, and that the polypeptide remains active as a ligand until it crosses the final energy barrier to attain the native state.  相似文献   

8.
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.  相似文献   

9.
SecB, a molecular chaperone in Escherichia coli, binds a subset of precursor proteins that are exported across the plasma membrane via the Sec pathway. Previous studies showed that SecB bound directly to the mature region rather than to the signal sequence of the precursor protein. To determine the binding pattern of SecB and the mature region of the preprotein, here, we visualized the structure of the SecB/OmpA complex by electron microscopy. This complex is composed by two parts: the main density represents one SecB tetramer and the unfolded part of OmpA wrapping round it; the elongated smaller density represents the rest of OmpA. Each SecB protomer makes a different contribution to the binding of SecB with OmpA. The binding pattern between SecB tetramer and OmpA is asymmetric.  相似文献   

10.
The general secretory, Sec, system translocates precursor polypeptides from the cytosol across the cytoplasmic membrane in Escherichia coli. SecB, a small cytosolic chaperone, captures the precursor polypeptides before they fold and delivers them to the membrane translocon through interactions with SecA. Both SecB and SecA display twofold symmetry and yet the complex between the two is stabilized by contacts that are distributed asymmetrically. Two distinct regions of interaction have been defined previously and here we identify a third. Calorimetric studies of complexes stabilized by different subsets of these interactions were carried out to determine the binding affinities and the thermodynamic parameters that underlie them. We show here that there is no change in affinity when either one of two contact areas out of the three is lacking. This fact and the asymmetry of the binding contacts may be important to the function of the complex in protein export.  相似文献   

11.
SecB is a cytosolic tetrameric chaperone in Escherichia coli, which maintains polypeptides, destined for export in a translocation competent state. The thermodynamics of unfolding of SecB was studied as a function of protein concentration, by using high sensitivity-differential scanning calorimetry and spectroscopic methods. The thermal unfolding of tetrameric SecB is reversible and can be well described as a two-state transition in which the folded tetramer is converted directly to unfolded monomers. Increasing the pH decreases the stability of the tetramer significantly, the T(m) changing from 341.3 K at pH 6.5 to 332.6 K at pH 9.5. The value of DeltaC(p) obtained from measurements of DeltaH(m) as a function of T(m) was 10.7 +/- 0.7 kcal mol(-1) K(-1). The value of DeltaC(p) is among the highest measured for a multimeric protein. At 298 K, pH 7.4, the DeltaG degrees (u) for the SecB tetramer is 27.9 +/- 2 kcal mol(-1). Denaturant-mediated unfolding of SecB was found to be irreversible. The reactivity of the four solvent-exposed free thiols in tetrameric SecB is salt dependent. The kinetics of reactivity suggests that these four cysteines are in close proximity to each other and that these residues on each monomer are in chemically identical environments. The thermodynamic data suggest that SecB is a stable, well-folded, and tightly packed tetramer and that substrate binding occurs at a surface site rather than at an interior cavity.  相似文献   

12.
The bacterial chaperone SecB assists translocation of proteins across the inner membrane. The mechanism by which it differentiates between secretory and cytosolic proteins is poorly understood. To identify its binding motif, we screened 2688 peptides covering sequences of 23 proteins for SecB binding. The motif is approximately 9 residues long and is enriched in aromatic and basic residues, whereas acidic residues are disfavored. Its identification allows the prediction of binding regions within protein sequences with up to 87% accuracy. SecB-binding regions occur statistically every 20-30 residues. The occurrence and affinity of binding regions are similar in SecB-dependent and -independent secretory proteins and in cytosolic proteins, and SecB lacks specificity toward signal sequences. SecB cannot thus differentiate between secretory and non-secretory proteins via its binding specificity. This conclusion is supported by the finding that SecB binds denatured luciferase, thereby allowing subsequent refolding by the DnaK system. SecB may rather be a general chaperone whose involvement in translocation is mediated by interactions of SecB and signal sequences of SecB-bound preproteins with the translocation apparatus.  相似文献   

13.
SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.  相似文献   

14.
In Escherichia coli , precursor proteins are targeted to the membrane-bound translocase by the cytosolic chaperone SecB. SecB binds to the extreme carboxy-terminus of the SecA ATPase translocase subunit, and this interaction is promoted by preproteins. The mutant SecB proteins, L75Q and E77K, which interfere with preprotein translocation in vivo , are unable to stimulate in vitro translocation. Both mutants bind proOmpA but fail to support the SecA-dependent membrane binding of proOmpA because of a marked reduction in their binding affinities for SecA. The stimulatory effect of preproteins on the interaction between SecB and SecA exclusively involves the signal sequence domain of the preprotein, as it can be mimicked by a synthetic signal peptide and is not observed with a mutant preprotein (Δ8proOmpA) bearing a non-functional signal sequence. Δ8proOmpA is not translocated across wild-type membranes, but the translocation defect is suppressed in inner membrane vesicles derived from a prlA4 strain. SecB reduces the translocation of Δ8proOmpA into these vesicles and almost completely prevents translocation when, in addition, the SecB binding site on SecA is removed. These data demonstrate that efficient targeting of preproteins by SecB requires both a functional signal sequence and a SecB binding domain on SecA. It is concluded that the SecB–SecA interaction is needed to dissociate the mature preprotein domain from SecB and that binding of the signal sequence domain to SecA is required to ensure efficient transfer of the preprotein to the translocase.  相似文献   

15.
Miller A  Wang L  Kendall DA 《Biochemistry》2002,41(16):5325-5332
In Escherichia coli, the formation of SecA-SecB complexes has a direct effect on SecA ATPase activity. The mechanism of this interaction was evaluated and defined using controlled trypsinolysis, equilibrium dialysis at low temperature, and kinetic analyses of the SecA ATPase reaction. The proteolysis data indicate that SecB and the nonhydrolyzable ATP analogue AMP-P-C-P induce similar conformational changes in SecA which result in a more open or extended structure that is suggestive of the ATP-bound form. The effect is synergistic and concentration-dependent, and requires the occupation of both the high- and low-affinity nucleotide binding sites for maximum effect. The equilibrium dialysis experiments and kinetic data support the observation that the SecB-enhanced SecA ATPase activity is the result of an increased rate of ATP hydrolysis rather than an increase in the affinity of ATP for SecA and that the high-affinity nucleotide binding site is conformationally regulated by SecB. It appears that SecB may function as an intermolecular regulator of ATP hydrolysis by promoting the ATP-bound state of SecA. The inhibition of SecA ATPase activity by sodium azide in the presence of IMVs and a functional signal peptide further indicates that SecB promotes the ATP-bound form of SecA.  相似文献   

16.
ProOmpA is a preprotein that is translocated across the plasma membrane by the general secretory pathway in Escherichia coli. The molecular chaperon SecB in Sec pathway can recognize and bind proOmpA for its translocation. However, the structure of the SecB/proOmpA complex remains unknown. Here, we constructed an uncleavable proOmpA fused with metallothionein at its C-terminus and labeled it with metals in vitro for the study of cryo-electron microscopy. Using single particle cryo-electron microscopy, we reconstructed 3D structure of the stable SecB/proOmpA complex. The structure shows that the major portion of preprotein locates on one side of SecB tetramer, resulting in an asymmetric binding pattern. This work also provides a possible approach to the structure determination of small protein complexes by cryo-electron microscopy.  相似文献   

17.
Zinc stabilizes the SecB binding site of SecA   总被引:1,自引:0,他引:1  
The molecular chaperone SecB targets preproteins to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA recognizes SecB via its carboxyl-terminal 22 aminoacyl residues, a highly conserved domain that contains 3 cysteines and 1 histidine residue that could potentially be involved in the coordination of a metal ion. Treatment of SecA with a zinc chelator resulted in a loss of the stimulatory effect of SecB on the SecA translocation ATPase activity, while the activity could be restored by the addition of ZnCl2. Interaction of SecB with the SecB binding domain of SecA is disrupted by chelators of divalent cations, and could be restored by the addition of Cu2+ or Zn2+. Atomic absorption and electrospray mass spectrometry revealed the presence of one zinc atom per monomeric carboxyl terminus of SecA. It is concluded that the SecB binding domain of SecA is stabilized by a zinc ion that promotes the functional binding of SecB to SecA.  相似文献   

18.
The chaperone SecB keeps precursor proteins in a translocation-competent state and targets them to SecA at the translocation sites in the cytoplasmic membrane of Escherichia coli. SecA is thought to recognize SecB via its carboxy-terminus. To determine the minimal requirement for a SecB-binding site, fusion proteins were created between glutathione-S-transferase and different parts of the carboxy-terminus of SecA and analysed for SecB binding. A strikingly short amino acid sequence corresponding to only the most distal 22 aminoacyl residues of SecA suffices for the authentic binding of SecB or the SecB-precursor protein complex. SecAN880, a deletion mutant that lacks this highly conserved domain, still supports precursor protein translocation but is unable to bind SecB. Heterodimers of wild-type SecA and SecAN880 are defective in SecB binding, demonstrating that both carboxy-termini of the SecA dimer are needed to form a genuine SecB-binding site. SecB is released from the translocase at a very early stage in protein translocation when the membrane-bound SecA binds ATP to initiate translocation. It is concluded that the SecB-binding site on SecA is confined to the extreme carboxy-terminus of the SecA dimer, and that SecB is released from this site at the onset of translocation.  相似文献   

19.
SecB is a homotetrameric, cytosolic chaperone that forms part of the protein translocation machinery in Escherichia coli. We have investigated the bound-state conformation of a model protein substrate of SecB, bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin-labeling and pyrene fluorescence methods. BPTI is a 58-residue protein and contains three disulfide groups between residues 5 and 55, 14 and 38, as well as 30 and 51. Mutants of BPTI that contained only a single disulfide were reduced, and the free cysteines were labeled with either thiol-specific spin labels or pyrene maleimide. The relative proximity of the labeled residues was studied using either electron spin resonance spectroscopy or fluorescence spectroscopy. The data suggest that SecB binds a collapsed coil of reduced unfolded BPTI, which then undergoes a structural rearrangement to a more extended state upon binding to SecB. Binding occurs at multiple sites on the substrate, and the binding site on each SecB monomer accommodates less than 21 substrate residues. In addition, we have labeled four solvent-accessible cysteine residues in the SecB tetramer and have investigated their relative spatial arrangement in the presence and absence of the substrate protein. The electron spin resonance data suggest that these cysteine residues are in close proximity (15 A) when no substrate protein is bound but move away to a distance of greater than 20 A when SecB binds substrate. This is the first direct evidence of a conformational change in SecB upon binding of a substrate protein.  相似文献   

20.
An early step in the export of maltose-binding protein to the periplasm is interaction with the molecular chaperone SecB. We demonstrate that binding to SecB in vivo is determined by a kinetic partitioning between the folding of maltose-binding protein to its native state and its association with SecB. A complex of SecB and a species of maltose-binding protein that folds slowly is shown to be longer-lived than a complex of the wild-type maltose-binding protein and SecB. In addition, we show that incomplete nascent chains, which are unable to fold, remain complexed with SecB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号