首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

2.
Genomic analysis of the hyperthermophilic archaeon Pyrococcus furiosus revealed the presence of an open reading frame (ORF PF1939) similar to the enzymes in glycoside hydrolase family 13. This amylolytic enzyme, designated PFTA (Pyrococcus furiosus thermostable amylase), was cloned and expressed in Escherichia coli. The recombinant PFTA was extremely thermostable, with an optimum temperature of 90°C. The substrate specificity of PFTA suggests that it possesses characteristics of both α-amylase and cyclodextrin-hydrolyzing enzyme. Like typical α-amylases, PFTA hydrolyzed maltooligosaccharides and starch to produce mainly maltotriose and maltotetraose. However, it could also attack and degrade pullulan and β-cyclodextrin, which are resistant to α-amylase, to primarily produce panose and maltoheptaose, respectively. Furthermore, acarbose, a potent α-amylase inhibitor, was drastically degraded by PFTA, as is typical of cyclodextrin-hydrolyzing enzymes. These results confirm that PFTA possesses novel catalytic properties characteristic of both α-amylase and cyclodextrin-hydrolyzing enzyme.  相似文献   

3.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

4.
A total of 215 Streptomyces strains were screened for their capacity to regio- and stereoselectively hydroxylate β- and/or α-ionone to the respective 3-hydroxy derivatives. With β-ionone as the substrate, 15 strains showed little conversion to 4-hydroxy- and none showed conversion to the 3-hydroxy product as desired. Among these 15 Streptomyces strains, S. fradiae Tü 27, S. arenae Tü 495, S. griseus ATCC 13273, S. violaceoniger Tü 38, and S. antibioticus Tü 4 and Tü 46 converted α-ionone to 3-hydroxy-α-ionone with significantly higher hydroxylation activity compared to that of β-ionone. Hydroxylation of racemic α-ionone [(6R)-(−)/(6S)-(+)] resulted in the exclusive formation of only the two enantiomers (3R,6R)- and (3S,6S)-hydroxy-α-ionone. Thus, the enzymatic hydroxylation of α-ionone by the Streptomyces strains tested proceeds with both high regio- and stereoselectivity.  相似文献   

5.
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates α- and β-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Δ(leuD-ara)798 fol-162], accumulated and excreted α-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted α- and β-isopropylmalate. The yield of α-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR92-1-216 (normally used as the source for α- and β-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of α-ketoisovaleric acid into α-isopropylmalate (α-isopropylmalate synthetase Km for α-ketoisovaleric acid, 6 × 10−5 M) severely restricted the amount of α-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase Km for α-ketoisovaleric acid, 1.1 × 10−3 M; transaminase B Km for α-ketoisovaleric acid, 2 × 10−3 M).  相似文献   

6.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

7.
A β-amylase-overproducing mutant of Clostridium thermosulfurogenes was grown in continuous culture on soluble starch to produce thermostable β-amylase. Enzyme productivity was reasonably stable over periods of weeks to months. The pH and temperature optima for β-amylase production were pH 6.0 and 60°C, respectively. Enzyme concentration was maximized by increasing biomass concentration by using high substrate concentrations and by maintaining a low growth rate. β-Amylase concentration reached 90 U ml−1 at a dilution rate of 0.07 h−1 in a 3% starch medium. A further increase in enzyme activity levels was limited by acetic acid inhibition of growth and low β-amylase productivity at low growth rates.  相似文献   

8.
α-Amylase production was examined in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released mainly into the culture fluid and had temperature and pH optima of 55°C and 5.5, respectively, and the apparent Km for starch was 0.8 mg ml−1. The products of α-amylase action were mainly maltotriose, maltotetraose, and longer-chain oligosaccharides. No activity of the enzyme was observed towards these compounds or pullulan, but activity on amylose was similar to starch. Evidence for the endo action of α-amylase was also obtained from experiments which showed that the reduction in iodine-staining capacity and release in reducing power by action on amylose was similar to that for commercial α-amylase. Activities of α-amylase up to 4.4 U ml−1 (1 U represents 1 μmol of glucose equivalents released per min) were obtained for cultures grown on 2.5 mg of starch ml−1 in shaken cultures. No growth occurred in unshaken cultures. With elevated concentrations of starch (>2.5 mg ml−1), α-amylase production declined and glucose accumulated in the cultures. Addition of glucose to cultures grown on low levels of starch, in which little glucose accumulated, suppressed α-amylase production, and in bisubstrate growth studies, active production of the enzyme only occurred during growth on starch after glucose had been preferentially utilized. When cellulose, cellobiose, glucose, xylan, and xylose were tested as growth substrates for the production of α-amylase (initial concentration, 2.5 mg ml−1), they were found to be less effective than starch, but maltose was almost as effective. The fungal α-amylase was found to be stable at 60°C in the presence of low concentrations of starch (≤5%), suggesting that it may be suitable for industrial application.  相似文献   

9.
Cell-free extracts, membranous fractions, and cell wall preparations from Schizosaccharomyces pombe were examined for the presence of (1 → 3)-β-, (1 → 3)-α-, and (1 → 6)-β-glucanase activities. The various glucanases were assayed in cells at different growth stages. Only (1 → 3)-β-glucanase activity was found, and this was associated with the cell wall fraction. Chromatographic fractionation of the crude enzyme revealed two endo-(1 → 3)-β-glucanases, designated as glucanase I and glucanase II. Glucanase I consisted of two subunits of molecular weights 78,500 and 82,000, and glucanase II was a single polypeptide of 75,000. Although both enzymes had similar substrate specificities and similar hydrolytic action on laminarin, glucanase II had much higher hydrolytic activity on isolated cell walls of S. pombe. On the basis of differential lytic activity on cell walls, glucanase II was shown to be present in conjugating cells and highest in sporulating cells. Glucanase II appeared to be specifically involved in conjugation and sporulation since vegetative cells and nonconjugating and nonsporulating cells did not contain this enzyme. The appearance of glucanase II in conjugating cells may be due to de novo enzyme synthesis since no activation could be demonstrated by combining extracts from vegetative and conjugating cells. Increased glucanase activity occurred when walls from conjugating cells were combined with walls from sporulating cells. Studies with trypsin and proteolytic inhibitors suggest that glucanase II exists as a zymogen in conjugating cells. A temperature-sensitive mutant of S. pombe was isolated which lysed at 37°C. Glucanase activity was higher in vegetative cells held at 37°C than cells held at 25°C. Unlike the wild-type strain, this mutant contained glucanase II activity during vegetative growth and may be a regulatory mutant.  相似文献   

10.
The formation and location of endo-1,4-β-glucanases and β-glucosidases were studied in cultures of Cellulomonas uda grown on microcrystalline cellulose, carboxymethyl cellulose, printed newspaper, and some mono- or disaccharides. Endo-1,4-Glucanases were found to be extracellular, but a very small amount of cell-bound endo-1,4-β-glucanase was considered to be the basal endoglucanase level of the cells. The formation of extracellular endo-1,4-β-glucanases was induced by cellobiose and repressed by glucose. Extracellular endoglucanase activity was inhibited by cellobiose but not by glucose. β-Glucosidases, on the other hand, were formed constitutively and found to be cell bound. β-Glucosidase activity was inhibited noncompetitively by glucose. Some characteristics such as the optimal pH for and the thermostability of the endoglucanases and β-glucosidases and the end products of cellulose degradation were determined.  相似文献   

11.
The ability of three strains of Lactobacillus acidophilus to survive and retain β-galactosidase activity during storage in liquid nitrogen at −196°C and during subsequent storage in milk at 5°C was tested. The level of β-galactosidase activity varied among the three strains (0.048 to 0.177 U/107 organisms). Freezing and storage at −196°C had much less adverse influence on viability and activity of the enzyme than did storage in milk at 5°C. The strains varied in the extent of the losses of viability and β-galactosidase activity during both types of storage. There was not a significant interaction between storage at −196°C and subsequent storage at 5°C. The strains that exhibited the greatest losses of β-galactosidase activity during storage in milk at 5°C also exhibited the greatest losses in viability at 5°C. However, the losses in viability were of much greater magnitude than were the losses of enzymatic activity. This indicates that some cells of L. acidophilus which failed to form colonies on the enumeration medium still possessed β-galactosidase activity. Cultures of L. acidophilus to be used as dietary adjuncts to improve lactose utilization in humans should be carefully selected to ensure that adequate β-galactosidase activity is provided.  相似文献   

12.
A novel liquefying α-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein−1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55°C. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1,548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (α/β)8 barrel motif in domain A.  相似文献   

13.
A thermostable amylase, possibly a β-amylase from Thermoactinomyces sp. no. 2 isolated from soil, is reported. The enzyme was purified 36-fold by acetone precipitation, ion-exchange chromatography, and Sephadex G-200 gel filtration, and the molecular weight was estimated at 31,600. The enzyme was characterized by demonstration of optimum activity at 60°C and pH 7 and by retention of 70% activity at 70°C (30 min). It was stimulated by Mn2+ and Fe2+ but strongly inhibited by Hg2+. Maltose was the only detectable product of hydrolysis of starches and was quantitatively highest in plantain starch hydrolysate.  相似文献   

14.
Despite treatment with agents that enhance β-cell function and insulin action, reduction in β-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3β (Gsk-3β). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3β to regulation of β-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/−) exhibit insulin resistance and a doubling of β-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3β (Gsk-3β+/−) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced β-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2−/−), like the Ir+/− mice, are insulin resistant, but develop profound β-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3β activity associated with a marked reduction of β-cell proliferation and increased apoptosis. Irs2−/− mice crossed with Gsk-3β+/− mice preserved β-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2−/− mice had increased cyclin-dependent kinase inhibitor p27kip1 that was limiting for β-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of β-cell mass in Gsk-3β+/−Irs2−/− mice was accompanied by suppressed p27kip1 levels and increased Pdx1 levels. To separate peripheral versus β-cell–specific effects of reduction of Gsk3β activity on preservation of β-cell mass, mice homozygous for a floxed Gsk-3β allele (Gsk-3F/F) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce β-cell–specific knockout of Gsk-3β (βGsk-3β−/−). Like Gsk-3β+/− mice, βGsk-3β−/− mice also prevented the diabetes of the Irs2−/− mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within β-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of β-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve β-cells and prevent diabetes onset.  相似文献   

15.
A Thermus thermophilus selector strain for production of thermostable and thermoactive α-galactosidase was constructed. For this purpose, the native α-galactosidase gene (agaT) of T. thermophilus TH125 was inactivated to prevent background activity. In our first attempt, insertional mutagenesis of agaT by using a cassette carrying a kanamycin resistance gene led to bacterial inability to utilize melibiose (α-galactoside) and galactose as sole carbohydrate sources due to a polar effect of the insertional inactivation. A Gal+ phenotype was assumed to be essential for growth on melibiose. In a Gal background, accumulation of galactose or its metabolite derivatives produced from melibiose hydrolysis could interfere with the growth of the host strain harboring recombinant α-galactosidase. Moreover, the AgaT strain had to be Kms for establishment of the plasmids containing α-galactosidase genes and the kanamycin resistance marker. Therefore, a suitable selector strain (AgaT Gal+ Kms) was generated by applying integration mutagenesis in combination with phenotypic selection. To produce heterologous α-galactosidase in T. thermophilus, the isogenes agaA and agaB of Bacillus stearothermophilus KVE36 were cloned into an Escherichia coli-Thermus shuttle vector. The region containing the E. coli plasmid sequence (pUC-derived vector) was deleted before transformation of T. thermophilus with the recombinant plasmids. As a result, transformation efficiency and plasmid stability were improved. However, growth on minimal agar medium containing melibiose was achieved only following random selection of the clones carrying a plasmid-based mutation that had promoted a higher copy number and greater stability of the plasmid.  相似文献   

16.
Ethyl methanesulfonate (EMS) killed wild-type Bacillus subtilis spores as rapidly as spores lacking small, acid-soluble proteins (SASP) of the α/β type (αβ spores), and 20% of the survivors had obvious mutations. A recA mutation increased the EMS sensitivity of wild-type and αβ spores similarly but reduced their mutagenesis; EMS treatment of dormant spores also resulted in the induction of RecA synthesis during spore germination. EMS generated similar levels of alkylated bases in wild-type and αβ spore DNAs, in purified DNA, or in DNA saturated with α/β-type SASP. Ethylene oxide (EtO) also generated similar levels of base alkylation in wild-type and αβ spore DNAs. These data indicate that EMS and EtO kill spores at least in part by DNA damage but that α/β-type SASP, which protect DNA against many types of damage, do not protect spore DNA from base alkylation.  相似文献   

17.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

18.
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite''s glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.  相似文献   

19.
A DNA genomic library constructed from Bacillus stearothermophilus, a gram-positive, facultative thermophilic aerobe that secretes a thermostable β-mannanase, was screened for mannan hydrolytic activity. Recombinant β-mannanase activity was detected on the basis of the clearing of halos around Escherichia coli colonies grown on a dye-labelled substrate, Remazol brilliant blue-locust bean gum. The nucleotide sequence of the mannanase gene, manF, corresponded to an open reading frame of 2,085 bp that codes for a 32-amino-acid signal peptide and a mature protein with a molecular mass of 76,089 Da. From sequence analysis, ManF belongs to glycosyl hydrolase family 5 and exhibits higher similarity to eukaryotic than to bacterial mannanases. The manF coding sequence was subcloned into the pH6EX3 expression plasmid and expressed in E. coli as a recombinant fusion protein containing a hexahistidine N-terminal sequence. The fusion protein has thermostability similar to the native enzyme and was purified by Ni2+ affinity chromatography. The values for the kinetic parameters Vmax and Km were 384 U/mg and 2.4 mg/ml, respectively, for the recombinant mannanase and were comparable to those of the native enzyme.  相似文献   

20.
Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin‐6 (IL‐6), interleukin‐11 (IL‐11) and soluble receptor of IL‐6 (sIL‐6R). It also examines the roles of integrin α2β1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2β1 integrin count and released higher levels of IL‐6 and sIL‐6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL‐11 content. The silencing of the α2 integrin subunit decreased the release of IL‐6. Similar effects were induced by TC‐I 15 (an α2β1 integrin inhibitor). The IL‐6 levels in the serum and heart were markedly lower in α2 integrin‐deficient mice B6.Cg‐Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL‐6 level. sIL‐6R secretion is not dependent on α2β1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL‐6 by cardiac fibroblasts, and this effect is dependent on α2β1 integrin and kinase Src activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号