首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and evolution of the two nonallelic rat preproinsulin genes.   总被引:108,自引:0,他引:108  
In the rat, there are two nonallelic genes for preproinsulin. The insulin end products are very similar and are equally expressed. We have isolated clones carrying these genes and their flanking sequences, and characterized them by DNA sequencing and electron microscopic analysis. We have established the primary structure of the preproinsulin mRNAs and the signal peptides of these two proteins. One of the genes contains two introns: a 499 bp intron interrupting the region encoding the connecting peptide and a 119 bp intron interrupting the segment encoding the 5 noncoding region of the mRNA. The introns are transcribed and present in a preproinsulin mRNA precursor. The other gene possesses the smaller, but not the larger, of the two introns. Calculations based on the divergence of the two preproinsulin nucleotide and amino acid sequences indicate that these genes are the products of a recent duplication. Thus one of the genes gained or lost an intron since that time.  相似文献   

2.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

3.
The nucleotide sequences of the entire gene family, comprising six genes, that encodes the Rubisco small subunit (rbcS) multigene family in Mesembryanthemum crystallinum (common ice plant), were determined. Five of the genes are arranged in a tandem array spanning 20 kb, while the sixth gene is not closely linked to this array. The mature small subunit coding regions are highly conserved and encode four distinct polypeptides of equal lengths with up to five amino acid differences distinguishing individual genes. The transit peptide coding regions are more divergent in both amino acid sequence and length, encoding five distinct peptide sequences that range from 55 to 61 amino acids in length. Each of the genes has two introns located at conserved sites within the mature peptide-coding regions. The first introns are diverse in sequence and length ranging from 122 by to 1092 bp. Five of the six second introns are highly conserved in sequence and length. Two genes, rbcS-4 and rbcS-5, are identical at the nucleotide level starting from 121 by upstream of the ATG initiation codon to 9 by downstream of the stop codon including the sequences of both introns, indicating recent gene duplication and/or gene conversion. Functionally important regulatory elements identified in rbcS promoters of other species are absent from the upstream regions of all but one of the ice plant rbcS genes. Relative expression levels were determined for the rbcS genes and indicate that they are differentially expressed in leaves.  相似文献   

4.
The multigene family encoding the small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase/oxygenase in the crucifer Arabidopsis thaliana has been isolated and the organization and structure of the individual members determined. The family consists of four genes which have been divided into two subfamilies on the basis of linkage and DNA and amino acid sequence similarities. Three of the genes, designated ats1B, ats2B, and ats3B, reside in tandem on an 8 kb stretch of the chromosome. These genes share greater than 95% similarity in DNA sequence and encode polypeptides identical in length and 96.7% similar in amino acid sequence. The fourth gene, ats1A, is at least 10 kb removed from, or completely unlinked to the B subfamily. The B subfamily genes are more similar to each other than to ats1A in nucleotide and amino acid sequence. All four genes are interupted by two introns whose placement within the coding region of the genes is conserved. The introns of the B subfamily genes are similar in length and nucleotide sequence, but show no similarity to the introns of ats1A. Comparison of the DNA sequences within the immediate 5 and 3 flanking sequences among the genes revealed only limited regions of homology. S1 analysis shows that all four genes are expressed.  相似文献   

5.
6.
The rat cytochrome P-450d gene which is inducibly expressed by the administration of 3-methylcholanthrene (MC) has been cloned and analyzed for the complete nucleotide sequence. The gene is 6.9 kilobases long and is separated into 7 exons by 6 introns. The insertion sites of the introns in this gene are well-conserved as compared with those of another MC-inducible cytochrome P-450c gene, but are completely different from those of a phenobarbital-inducible cytochrome P-450e gene. The overall homologies in the coding nucleotide and deduced amino acid sequences were 75% and 68% between the two MC-inducible cytochrome P-450 genes, respectively. The similarity of the gene organization between cytochrome P-450d and P-450c as well as their homology in the deduced amino acid and the nucleotide sequences suggests that these two genes of MC-inducible cytochromes P-450 constitute a different subfamily than those of the phenobarbital-inducible one in the cytochrome P-450 gene family. In contrast with the notable sequence homology in the coding region of the two MC-inducible cytochromes P-450, all the introns and the 5'- and 3'-flanking regions of the two genes showed virtually no sequence homology between them except for several short DNA segments that are located in the promoter region and the first intron. The nucleotide sequences and the locations of these conserved short DNA segments in the two genes suggest that they may affect the expression of the genes. Middle repetitive sequence reported as ID or identifier sequence were found in and in the vicinity of the cytochrome P-450d gene.  相似文献   

7.
Organization and variation of angiosperm mitochondrial genome   总被引:2,自引:0,他引:2  
The mitochondrial genomes of angiosperms are the largest mitochondrial genomes so far reported and are highly variable in size among plant species. The comparative analysis of the angiosperm mitochondrial genomes at the nucleotide level has now become feasible for addressing long-standing questions, owing to the publication of five dicot and three monocot genomes. Whereas the identified genes and introns are rather well conserved, intergenic regions are highly variable in sequence, even between two close relatives. Promiscuous DNA and horizontally transferred sequence constitute part of the intergenic regions, but the origin of the majority of these regions is unknown. On the other hand, duplication and extensive rearrangement of preexisting sequences may be one of the explanations for the occurrence of unknown sequences. Functional aspects of the mitochondrial genome, such as RNA editing and expression of unique open reading frames (ORFs), can be changed under certain nuclear genotypes.  相似文献   

8.
Structure and evolution of the Xenopus laevis albumin genes   总被引:4,自引:0,他引:4  
The 68K and 74K albumin genes of Xenopus laevis arose by duplication approximately 30 million years ago. Electron microscopic analysis showed that both genes contain 15 coding sequences. The lengths of corresponding coding sequences are almost identical and are extremely similar to those of mammalian albumin genes. A block of four coding sequences, which in mammals codes for one protein domain, is repeated three times. The corresponding introns are usually different in length and have therefore diverged as a result of insertion/deletion events. The extensive homology between these gene sequences is neither confined to nor most extensive in the coding sequences and similar amounts of homologous sequences are found in the flanking DNAs as in the gene regions. Various structures were formed in the 5'-flanking DNA by mutually exclusive pairing of different homology regions. Analysis of the two 74K albumin gene sequences isolated suggests that the X. laevis genome may contain one 68K albumin gene and two very closely related 74K albumin genes.  相似文献   

9.
Structure and evolution of the bovine prothrombin gene   总被引:6,自引:0,他引:6  
The cloned bovine prothrombin gene has been characterized by partial DNA sequence analysis, including the 5' and 3' flanking sequences and all the intron-exon junctions. The gene is approximately 15.4 x 10(3) base-pairs in length and comprises 14 exons interrupted by 13 introns. The exons coding for the prepro-leader peptide and the gamma-carboxyglutamic acid-containing region are similar in organization to the corresponding exons in the factor IX and protein C genes. This region has probably evolved as a result of recent gene duplication and exon shuffling events. The exons coding for the kringles and the serine protease region of the prothrombin gene are different in organization from the homologous regions in other genes, suggesting that introns have been inserted into these regions after the initial gene duplication events.  相似文献   

10.
The genomes of homeothermic (warm-blooded) vertebrates are mosaic interspersions of homogeneously GC-rich and GC-poor regions (isochores). Evolution of genome compartmentalization and GC-rich isochores is hypothesized to reflect either selective advantages of an elevated GC content or chromosome location and mutational pressure associated with the timing of DNA replication in germ cells. To address the present controversy regarding the origins and maintenance of isochores in homeothermic vertebrates, newly obtained as well as published nucleotide sequences of the insulin and insulin-like growth factor (IGF) genes, members of a well-characterized gene family believed to have evolved by repeated duplication and divergence, were utilized to examine the evolution of base composition in nonconstrained (flanking) and weakly constrained (introns and fourfold degenerate sites) regions. A phylogeny derived from amino acid sequences supports a common evolutionary history for the insulin/IGF family genes. In cold- blooded vertebrates, insulin and the IGFs were similar in base composition. In contrast, insulin and IGF-II demonstrate dramatic increases in GC richness in mammals, but no such trend occurred in IGF- I. Base composition of the coding portions of the insulin and IGF genes across vertebrates correlated (r = 0.90) with that of the introns and flanking regions. The GC content of homologous introns differed dramatically between insulin/IGF-II and IGF-I genes in mammals but was similar to the GC level of noncoding regions in neighboring genes. Our findings suggest that the base composition of introns and flanking regions is determined by chromosomal location and the mutational pressure of the isochore in which the sequences are embedded. An elevated GC content at codon third positions in the insulin and the IGF genes may reflect selective constraints on the usage of synonymous codons.   相似文献   

11.
12.
G L McKnight  P J O'Hara  M L Parker 《Cell》1986,46(1):143-147
A functional cDNA from Aspergillus nidulans encoding triosephosphate isomerase (TPI) was isolated by its ability to complement a tpi1 mutation in Saccharomyces cerevisiae. This cDNA was used to obtain the corresponding gene, tpiA. Alignment of the cDNA and genomic DNA nucleotide sequences indicated that tpiA contains five introns. The intron positions in the tpiA gene were compared with those in the TPI genes of human, chicken, and maize. One intron is present at an identical position in all four organisms, two other introns are located in similar positions in A. nidulans and maize, and the remaining two introns are unique to A. nidulans. These Aspergillus-specific introns are located in regions of the protein that were predicted to be interrupted by introns based on analysis of a Go plot of chicken TPI. These comparisons are discussed in relation to the evolution of introns within TPI genes.  相似文献   

13.
M. Rina  C. Savakis 《Genetics》1991,127(4):769-780
Four genes encoding the major egg yolk polypeptides of the Mediterranean fruit fly Ceratitis capitata, vitellogenins 1 and 2 (VG1 and VG2), were cloned, characterized and partially sequenced. The genes are located on the same region of chromosome 5 and are organized in pairs, each encoding the two polypeptides on opposite DNA strands. Restriction and nucleotide sequence analysis indicate that the gene pairs have arisen from an ancestral pair by a relatively recent duplication event. The transcribed part is very similar to that of the Drosophila melanogaster yolk protein genes Yp1, Yp2 and Yp3. The Vg1 genes have two introns at the same positions as those in D. melanogaster Yp3; the Vg2 genes have only one of the introns, as do D. melanogaster Yp1 and Yp2. Comparison of the five polypeptide sequences shows extensive homology, with 27% of the residues being invariable. The sequence similarity of the processed proteins extends in two regions separated by a nonconserved region of varying size. Secondary structure predictions suggest a highly conserved secondary structure pattern in the two regions, which probably correspond to structural and functional domains. The carboxy-end domain of the C. capitata proteins shows the same sequence similarities with triacyglycerol lipases that have been reported previously for the D. melanogaster yolk proteins. Analysis of codon usage shows significant differences between D. melanogaster and C. capitata vitellogenins with the latter exhibiting a less biased representation of synonymous codons.  相似文献   

14.
D A Konkel  J V Maizel  P Leder 《Cell》1979,18(3):865-873
We have determined the entire nucleotide sequence of a cloned mouse beta--globinminor gene and compared it to the closely related sequence of the betamajor gene. These two genes differ by nine amino acids and presumably evolved from a common ancestral gene as recently as 50 million years ago. Since these genes are closely linked and coordinately expressed, they provide an especially favorable opportunity to assess selection and mutation as these processes affect genes under similar constraints. We find that evolution has preserved these two genes in two short segments of DNA which include their immediately adjacent flanking regions. These regions presumably encode functions that are necessary for proper globin gene expression. In contrast, the more distal flanking sequences and major segments of the long intervening sequences have diverged much more sharply. The homology pattern in these genes also provides considerable insight into the mechanisms by which less constrained nucleotide sequences diverge rapidly. Change in such regions apparently occurs less by point mutation than by insertion, deletion and duplication of relatively short segments of the genome.  相似文献   

15.
16.
Genes for the human vacuolar type H(+)-ATPase proteolipid (16-kDa) subunit were cloned and their nucleotide sequences were determined. Comparison of the deduced sequences indicated that at least four genes including pseudogenes are present in the human genome. One of them corresponded to that for the 16-kDa subunit expressed in HeLa cells. The coding sequence was separated by two introns. The second intron was located in the DNA segment giving a loop between the second and third transmembrane helices, supporting the idea that the 16-kDa subunit was evolved by gene duplication. The primary sequence determined from the second clone had a termination codon behind the third transmembrane helix. Possible translation products from the other two clones had no putative acidic residues essential for proton transport function of the 16-kDa subunit. Thus, it is interesting to know whether these genes are transcribed, since they may have unique cellular functions.  相似文献   

17.
18.
19.
Human genomic DNAs for the eosinophil granule proteins, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), were isolated from genomic libraries. Alignment of EDN (RNS2) and ECP (RNS3) gene sequences demonstrated remarkable nucleotide similarities in noncoding sequences, introns, and flanking regions, as well as in the previously known coding regions. Detailed examination of the 5'-noncoding regions yielded putative TATA and CAAT boxes, as well as similarities to promoter motifs from unrelated genes. A single intron of 230 bases was found in the 5' untranslated region and we suggest that a single intron in this region and an intronless coding region are features common to many members of the RNase gene superfamily. The RNS2 and RNS3 genes were localized to the q24-q31 region of human chromosome 14. It is likely that these two genes arose as a consequence of a gene duplication event that took place approximately 25-40 million years ago and that a subset of anthropoid primates possess both of these genes or closely related genes.  相似文献   

20.
The mature mRNA always carries nucleotide sequences that faithfully mirror the protein product according to the niles of the genetic code. However, in the chromosome, the nucleotide sequence that represents a certain protein is interrupted by additional sequences. Therefore, most eukaryotic genes are longer than their final mRNA products. The human genome project revealed that only a tiny portion of sequences serves as protein-coding region and almost one quarter of the genome is occupied by non-coding intervening sequences. The elimination of these non-coding regions from the precursor RNA in a process termed splicing must be extremely precise, because even a single nucleotide mistake may cause a fatal error. At present, two types of intervening sequences have been identified in protein-coding genes. One of them, the U2-dependent or major-class is prevalent and represents 99% of known sequences. The other one, the so-called U12-dependent or minor-class of introns, occurs in much lesser amounts in the genome. The basic problem of nuclear splicing concerns i/ the molecular mechanisms, which ensure that the coding regions are correctly recognized and spliced together: ii/ the principles and mechanisms that guarantee the high fidelity of the splicing system; iii/ the differences in the excision mechanisms of the two classes of introns. We are going to present models explaining how intervening sequences are accurately removed and the coding regions correctly juxtaposed. The two splicing mechanisms will also be compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号