首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

2.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

3.
Tryptases are trypsin-like serine proteinases found in the granules of mast cells. Although they show 40% sequence identity with trypsin and contain only 20 or 21 additional residues, tryptases display several unusual features. Unlike trypsin, the tryptases only make limited cleavages in a few proteins and are not inhibited by natural trypsin inhibitors, they form tetramers, bind heparin, and their activity on synthetic substrates is progressively inhibited as the concentration of salt increases above 0.2 M. Unique sequence features of seven tryptases were identified by comparison to other serine proteinases. The three-dimensional structures of the tryptases were then predicted by molecular modeling based on the crystal structure of bovine trypsin. The models show two large insertions to lie on either side of the active-site cleft, suggesting an explanation for the limited activity of tryptases on protein substrates and the lack of inhibition by natural inhibitors. A group of conserved Trp residues and a unique proline-rich region make two surface hydrophobic patches that may account for the formation of tetramers and/or inhibition with increasing salt. Although they contain no consensus heparin-binding sequence, the tryptases have 10-13 more His residues than trypsin, and these are positioned on the surface of the model. In addition, clustering of Arg and Lys residues may also contribute to heparin binding. Putative Asn-linked glycosylation sites are found on the opposite side of the model from the active site. The model provides structural explanations for some to the unusual characteristics of the tryptases and a rational basis for future experiments, such as site-directed mutagenesis.  相似文献   

4.
In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N‐terminal cell death effector domain, a central NACHT domain and a C‐terminal WD‐repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD‐repeat domain responsible for recognition of non‐self. Remarkably, the architecture of these proteins is related to pathogen‐recognition receptors ensuring innate immunity in plants and animals. Here, we hypothesize that these P. anserina incompatibility genes could be components of a yet‐unidentified innate immune system of fungi. As already proposed in the case of plant hybrid necrosis or graft rejection in mammals, incompatibility could be a by‐product of pathogen‐driven divergence in host defense genes.  相似文献   

5.
Autophagy can orchestrate a variety of cellular responses to dangerous stimuli. Our understanding of the physiologic roles of autophagy has recently expanded; in addition to its other roles, autophagy now appears to play an essential role in regulating inflammatory responses. This review describes recent findings concerning the roles and mechanisms of autophagy in controlling excessive inflammation.  相似文献   

6.
Human mast cell tryptases vary strikingly in secretion, catalytic competence, and inheritance. To explore the basis of variation, we compared genes from a range of primates, including humans, great apes (chimpanzee, gorilla, orangutan), Old- and New-World monkeys (macaque and marmoset), and a prosimian (galago), tracking key changes. Our analysis reveals that extant soluble tryptase-like proteins, including alpha- and beta-like tryptases, mastins, and implantation serine proteases, likely evolved from membrane-anchored ancestors because their more deeply rooted relatives (gamma tryptases, pancreasins, prostasins) are type I transmembrane peptidases. Function-altering mutations appeared at widely separated times during primate speciation, with tryptases evolving by duplication, gene conversion, and point mutation. The alpha-tryptase Gly(216)Asp catalytic domain mutation, which diminishes activity, is present in macaque tryptases, and thus arose before great apes and Old World monkeys shared an ancestor, and before the alphabeta split. However, the Arg(-3)Gln processing mutation appeared recently, affecting only human alpha. By comparison, the transmembrane gamma-tryptase gene, which anchors the telomeric end of the multigene tryptase locus, changed little during primate evolution. Related transmembrane peptidase genes were found in reptiles, amphibians, and fish. We identified soluble tryptase-like genes in the full spectrum of mammals, including marsupial (opossum) and monotreme (platypus), but not in nonmammalian vertebrates. Overall, our analysis suggests that soluble tryptases evolved rapidly from membrane-anchored, two-chain peptidases in ancestral vertebrates into soluble, single-chain, self-compartmentalizing, inhibitor-resistant oligomers expressed primarily by mast cells, and that much of present numerical, behavioral, and genetic diversity of alpha- and beta-like tryptases was acquired during primate evolution.  相似文献   

7.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   

8.
9.
Plants, like animals, suffer from a variety of diseases that are transmitted via their sexual organs. In many species, the flowers senesce rapidly after pollination or fertilization. In ongoing studies of the impacts of a transposon insertional mutation in the gene that encodes the most abundant isoform of a major group-1 pollen allergen of maize, we found that pollen tubes with the mutant allele grow significantly slower in vivo than pollen with the wild-type allele. Here, we report that under field conditions, maize silks (styles) pollinated with pollen bearing the slower-growing mutant allele take significantly longer to senesce, and the resulting ears (infructescences) have dramatically higher incidence of "fungal ear rot" disease than silks pollinated with pollen bearing the wild-type allele. Because ear rot fungi gain access to the developing ear by growing on and through the silks, we propose that accelerated senescence of silks after fertilization is a defense against pathogens such as those causing ear rot. In addition, we divided the silks on each ear into two halves and experimentally varied the type of pollen (wild type, mutant, unpollinated) that was placed onto each half of the silks. Senescence of unpollinated silks was accelerated when ovaries on the other half of the ear were fertilized.  相似文献   

10.
Global switches and fine-tuning-ABA modulates plant pathogen defense   总被引:6,自引:0,他引:6  
Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.  相似文献   

11.
12.
Cross talk between signaling pathways in pathogen defense   总被引:34,自引:0,他引:34  
Plant defense in response to microbial attack is regulated through a complex network of signaling pathways that involve three signaling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene. The SA and JA signaling pathways are mutually antagonistic. This regulatory cross talk may have evolved to allow plants to fine-tune the induction of their defenses in response to different plant pathogens.  相似文献   

13.
Mast cells are located in close proximity to neurons in the peripheral and central nervous systems, suggesting a functional role in normal and aberrant neurodegenerative states. They also possess many of the features of neurons, in terms of monoaminergic systems, responsiveness to neurotrophins and neuropeptides and the ability to synthesise and release bioactive neurotrophic factors. Mast cells are able to secrete an array of potent mediators which may orchestrate neuroinflammation and affect the integrity of the blood-brain barrier. The cross-talk between mast cells, lymphocytes, neurons and glia constitutes a neuroimmune axis which is implicated in a range of neurodegenerative diseases with an inflammatory and/or autoimmune component, such as multiple sclerosis and Alzheimer's disease. Mast cells appear to make an important contribution to developing, mature and degenerating nervous systems and this should now be recognised when assessing the neurotoxic potential of xenobiotics.Abbreviations AChE acetylcholinesterase - ALS amyotrophic lateral sclerosis - APP amyloid precursor protein - BBB blood-brain barrier - BDNF brain-derived neurotrophic factor - CGRF calcitonin gene-related peptide - CNS central nervous system - CNTF ciliary neurotrophic factor - CSF cerebrospinal fluid - C48/80 compound 48/80 - CTMC connective tissue mast cells - EAA excitatory amino acids - EAE experimental allergic encephalomyelitis - ECMA ethylcholine mustard aziridinium ion - FACS fluorescent activated cell sorter - 5HT 5-hydroxytryptamine (serotonin) - HMT histamine-N-methyltransferase - HPMC human placental mast cells - HRNGF human recombinant nerve growth factor - IgE immunoglobulin E - MMC methyl mercuric chloride - MAOI monoamine oxidase inhibitors - MDMA methylenedioxymetamphetamine - MS multiple sclerosis - NGF nerve growth factor - NT3 neurotrophin 3 - PNS peripheral nervous system - RBMC rat brain mast cells - ROS reactive oxygen species - RPMC rat peritoneal mast cells - SLE systemic lupus erythematosus - SP substance P - TCA trichloroacetic acid - THA tetrahydroacridine - TCA tricyclic antidepressants Special issue dedicated to Dr. Robert Balázs.  相似文献   

14.
15.
Drosophila innate immunity: a genomic view of pathogen defense   总被引:1,自引:0,他引:1  
Jasper H  Bohmann D 《Molecular cell》2002,10(5):967-969
  相似文献   

16.
OBJECTIVE: To evaluate mast cell (MC) density, in liver tissues taken from young and aging rats treated with carbon tetrachloride (CCl4) or untreated, as a quantitative marker of acute liver inflammation and to investigate whether the density of MCs varied with the rats' age. STUDY DESIGN: Rats aged 2, 6, 12 and 19 months treated intraperitoneally with CCl4 were killed 2 and 24 hours after intoxication. Hepatocellular damage was established by measuring alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Four histologic sections of 12 specimens from each age group were stained with toluidine blue to identify the MCs, which were counted using a computer-assisted image analysis system. RESULTS: Histology showed hepatocellular necrosis with inflammatory infiltration both 2 and 24 hours after intoxication. Serum AST levels were high in the 6- and 12-month-old rats, whereas ALT levels were high in the those aged 2 and 19 months. Two and 24 hours after intoxication, MC density increased considerably in young rats but less so in rats aged 19 months. CONCLUSION: MC density can be a useful marker of acute liver inflammation. The greater density in young rats suggests that older rats have a reduced immune response or recruit fewer MCs.  相似文献   

17.
18.
19.
The mucosal layer of the gastrointestinal (GI) tract is able to resist digestion by the endogenous substances that we secrete to digest foodstuffs. So-called "mucosal defense" is multi-factorial and can be modulated by a wide range of substances, many of which are classically regarded as inflammatory mediators. Damage to the GI mucosa, and its subsequent repair, are also modulated by various inflammatory mediators. In this article, we provide a review of some of the key inflammatory mediators that modulate GI mucosal defense, injury, and repair. Among the mediators discussed are nitric oxide, polyamines, the eicosanoids (prostaglandins and lipoxins), protease-activated receptors, and cytokines. Many of these endogenous factors, or the enzymes involved in their synthesis, are considered potential therapeutic targets for the treatment of diseases of the digestive tract that are characterized by inflammation and ulceration.  相似文献   

20.
Eicosanoids in asthma, allergic inflammation, and host defense   总被引:1,自引:0,他引:1  
Eicosanoids are diverse mediators of inflammation that derive from a single cell membrane phospholipid-associated precursor, arachidonic acid. This precursor is metabolized to several groups of lipid mediators, including (but not limited to) prostaglandins, leukotrienes, and lipoxins, in a tightly regulated, coordinated, cell- and context-specific manner. Each mediator serves regulatory and homeostatic functions in the onset and resolution of inflammation, immune responses, and tissue repair. The cloning of biosynthetic enzymes and G protein-coupled receptors for each of these mediators, the development of transgenic mice deficient in these molecules, and the availability of selective antagonists have permitted studies that have rapidly expanded our understanding of the scope of biologic functions for these mediators, with potential ramifications for the pathogenesis and treatment of human asthma. This review summarizes these findings and reviews the data from both mouse and human studies pertinent to the pathobiologic role of each mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号