首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Screening of a rat brain cDNA library with a radiolabeled probe made from an alpha 3 cDNA (Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemanns, S., and Patrick, J. (1986) Nature 319, 368-374) resulted in the isolation of a clone whose sequence encodes a protein, beta 3, which is homologous (40-55% amino acid sequence identity) to previously described neuronal nicotinic acetylcholine receptor subunits. The encoded protein has structural features found in other nicotinic acetylcholine receptor (nAChR) subunits. Two cysteine residues that correspond to cysteins 128 and 142 of the Torpedo nAChR alpha subunit are present in beta 3. Absent from beta 3 are 2 adjacent cysteine residues that correspond to cysteines 192 and 193 of the Torpedo subunit. In situ hybridization histochemistry, performed using probes derived from beta 3 cDNAs, demonstrated that the beta 3 gene is expressed in the brain. Thus, beta 3 is the fifth member of the nAChR gene family that is expressed in the brain. The pattern of beta 3 gene expression partially overlaps with that of the neuronal nAChR subunit genes alpha 3, alpha 4, or beta 2. These results lead us to propose that the beta 3 gene encodes a neuronal nAChR subunit.  相似文献   

2.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

3.
烟碱型乙酰胆碱受体是昆虫体内重要的神经受体,同时也是杀虫剂作用靶标.从甜菜夜蛾Spodoptera exigua3龄幼虫体内提取总的RNA,经过反转录,利用RT-PCR获得了烟碱型乙酰胆碱受体6个α和1个β亚基基因的cD-NA序列片段,并利用cDNA末端快速扩增技术(RACE)获得了β亚基基因的cDNA序列全长.该基因命名为SenAChRβl,其长度为2231个碱基,含有一个1575个碱基的开放读码框,开放读码框编码524个氨基酸残基,预测的分子量为60 kDa.推导得到的氨基酸序列与其它昆虫特别是鳞翅目昆虫的烟碱型乙酰胆碱受体β亚基具有高度的同源性,并具有典型的烟碱型乙酰胆碱受体β亚基特征化位点.  相似文献   

4.
5.
烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor,nAChR)在昆虫中枢神经系统的递质传递过程中起着重要作用。本研究采用RT-PCR和RACE技术,从桔小实蝇Bactrocera dorsalis(Hendel)体内克隆获得nAChRβ亚基的cDNA序列,命名为Bdβ3(GenBank登录号:JF974074)。测序结果表明,Bdβ3的cDNA序列全长1602bp,开放阅读框为1287bp,编码429个氨基酸残基,预测蛋白质分子量和等电点分别为48.8ku和5.81。通过对氨基酸同源性分析表明,Bdβ3具有nAChR亚基的典型特征,与其他昆虫nAChR亚基具有较高的氨基酸相似性,与黑腹果蝇nAChRβ3亚基具有49.78%的相似性。Bdβ3在桔小实蝇的不同发育时期和成虫的不同体段的实时定量PCR结果表明,Bdβ3在整个发育阶段均有表达,其中在成虫期的表达水平最高,这可能与Bdβ3主要在成虫期发挥作用有关;Bdβ3在桔小实蝇头部表达量最高,显著高于胸部和腹部。研究结果为深入分析桔小实蝇nAChR亚基的功能以及对多杀菌素的靶标抗性机制提供了基础数据。  相似文献   

6.
二化螟乙酰胆碱受体α亚基的基因克隆与序列分析   总被引:4,自引:0,他引:4  
烟碱型乙酰胆碱受体(nAChR)在昆虫的兴奋性突触传递中起着重要的作用,同时也是杀虫剂作用的重要靶标。近年来,二化螟对作用于昆虫nAChR的沙蚕毒素类杀虫剂杀虫单产生了高抗性。为了研究可能存在的靶标不敏感机制,我们采用RT-PCR技术,对二化螟nAChR-α亚 基全长cDNA进行了分子克隆。序分析表明,这是1个新的α亚基基因,定名为Cs α 1。基 因全长为1997个核苷酸,包含了1个开放阅读框,编码1个509氨基酸的成熟蛋白和1个24氨基酸的信号肽。Cs α 1与其他昆虫nAChR α亚基之间有52%-94%的同源性,高于与脊椎动物nAChR α亚基之间的同源性。  相似文献   

7.
A new nicotinic acetylcholine receptor (nAChR) subunit, beta 4, was identified by screening a rat genomic library. In situ hybridization histochemistry revealed expression of the beta 4 gene in the medial habenula of adult rat brains. The primary structure of this subunit was deduced from a cDNA clone isolated from a PC12 cDNA library. Functional nAChRs were detected in Xenopus oocytes injected in pairwise combinations with in vitro synthesized RNAs encoding beta 4 and either the alpha 2, alpha 3, or alpha 4 subunit. Unlike the alpha 3 beta 2 receptor, the alpha 3 beta 4 receptor is not blocked by bungarotoxin 3.1, indicating that the beta subunit can affect the sensitivity of neuronal nAChRs to this toxin. These results extend the functional diversity of nicotinic receptors in the nervous system.  相似文献   

8.
9.
10.
Abstract: Expression of the cloned neuronal nicotinic acetylcholine receptor (nAChR) α7 subunit in several cultured mammalian cell lines has revealed that the folding, assembly, and subcellular localization of this protein are critically dependent upon the nature of the host cell. In all cell lines that were examined, high levels of α7 protein were detected by metabolic labelling and immunoprecipitation after transfection with the cloned α7 cDNA. In contrast, elevated levels of α-bungarotoxin binding could be detected in only two of the nine cell lines. Both of these "α7-permissive" cell lines [rat phaeochromocytoma (PC12) and human neuroblastoma (SH-SY5Y)] express an endogenous α7 subunit. However, by expression of an epitope-tagged α7 subunit, it has been possible to show that the elevation in surface α-bungarotoxin binding in these two cell lines is due to expression of cDNA-encoded α7. The cell-specific misfolding of the neuronal nAChR α7 subunit is a phenomenon that is not shared by either the hetero-oligomeric muscle nAChR or the homo-oligomeric serotonin receptor 5-HT3 subunit. Our data also indicate that the cell-specific misfolding cannot be explained by a requirement for the coassembly with other known nAChR subunits and cannot be alleviated by treatments that have been reported to affect the assembly efficiency of other neurotransmitter-gated ion channels.  相似文献   

11.
Insect nicotinic acetylcholine receptors (nAChRs) play a central role in mediating neuronal synaptic transmission and are the target sites for the increasingly important group of neonicotinoid insecticides. Six nicotinic acetylcholine receptor (nAChR) subunits (four alpha-type and two beta-type) have been cloned previously from the model insect species Drosophila melanogaster. Despite extensive efforts, it has not been possible to generate functional recombinant nAChRs by heterologous expression of any combination of these six subunits. It has, however, been possible to express functional hybrid receptors when Drosophila alpha subunits are co-expressed with vertebrate beta subunits. This has led to the assumption that successful heterologous expression might require an, as yet, uncloned beta-type insect subunit. Examination of the recently completed Drosophila genomic sequence data has identified a novel putative nAChR beta-type subunit. Here we report the molecular cloning, heterologous expression and characterization of this putative Drosophila nAChR subunit (Dbeta3). Phylogenetic comparisons with other ligand-gated ion channel subunit sequences support its classification as a nAChR subunit but show it to be a distantly related member of this neurotransmitter receptor subunit family. Evidence that the Dbeta3 subunit is able to coassemble with other Drosophila nAChR subunits and contribute to recombinant nAChRs has been obtained by both radioligand binding and coimmunoprecipitation studies in transfected Drosophila S2 cells.  相似文献   

12.
The genes coding for the beta and epsilon subunits of the mouse muscle nicotinic acetylcholine receptor (nAChR) were mapped by Southern blot analysis, and the entire loci for both genes cloned. The results indicate that they are single-copy genes. Both were sequenced to determine their size and structural organization. The beta subunit gene spans approximately 8 kilobases and is organized into 11 exons. A region containing cysteines, which are thought to form a disulfide bond and which are highly conserved, is encoded by one exon in all muscle acetylcholine receptor genes with the exception of the beta subunit gene, where it is split into two exons. The epsilon subunit gene spans 4.3 kilobases and contains 12 exons; it has the same structure as the gamma and delta nAChR genes. The intron-exon boundaries and exonic organization of the five known nAChR genes were compared. The analysis showed that the first 4 exons and the last exon of all muscle and brain nAChR subunit genes have the same boundaries, with the exception of a nAChR-related gene in Drosophila.  相似文献   

13.
Abstract: Nicotinic acetylcholine (ACh) receptors (nAChRs) are important excitatory neurotransmitter receptors in the insect CNS. We have isolated and characterized the gene and the cDNA of a new nAChR subunit from Drosophila . The predicted mature nAChR protein consists of 773 amino acid residues and has the structural features of an ACh-binding α subunit. It was therefore named Dα3, for D rosophila α -subunit 3 . The dα3 gene maps to the X chromosome at position 7E. The properties of the Dα3 protein were assessed by expression in Xenopus oocytes. Dα3 did not form functional receptors on its own or in combination with any Drosophila β-type nAChR subunit. Nondesensitizing ACh-evoked inward currents were observed when Dα3 was coexpressed with the chick β2 subunit. Half-maximal responses were at ∼0.15 µ M ACh with a Hill coefficient of ∼1.5. The snake venom component α-bungarotoxin (100 n M ) efficiently but reversibly blocked Dα3/β2 receptors, suggesting that Dα3 may be a component of one of the previously described two classes of toxin binding sites in the Drosophila CNS.  相似文献   

14.
15.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect brain and are target sites for neonicotinoid insecticides. Seven nAChR subunits (four alpha-type and three beta-type) have been cloned previously from Drosophila melanogaster, the model insect system and characterized by heterologous expression. Recently, three further putative nAChR alpha subunits (Dalpha5, Dalpha6 and Dalpha7) with sequence similarity to the vertebrate alpha7 subunit have been identified from Drosophila genome sequence data but there have been no reports, as yet, of their characterization by heterologous expression. In the present study, we report the first isolation of a full-length Dalpha7 cDNA and the independent molecular cloning of Dalpha6. Binding of nicotinic radioligands was not detected to full-length Dalpha6 or Dalpha7 subunits when expressed alone or when or co-expressed with other nAChR subunits in Drosophila or mammalian cell lines, but specific cell-surface binding of [(125)I]alpha-bungarotoxin (K(d) = 0.68 +/- 0.22 nm) and [(3)H]methyllycaconitine (K(d) = 0.27 +/- 0.06 nm) was detected after expression of a subunit chimera containing the ligand-binding domains of Dalpha6 fused to the C-terminal domain of the 5-hydroxytryptamine receptor 5HT(3A). Although cell-surface binding was not detected with a Dalpha7/5HT(3Alpha) chimera expressed alone, co-expression of the two subunit chimeras resulted in significantly enhanced levels of nicotinic radioligand binding (with no change in affinity). This is the first evidence for the formation of a nAChR binding site by heterologously expressed Drosophila nAChR subunits in the absence of a co-expressed vertebrate nAChR subunit. In addition to the formation of homomeric nAChR complexes, evidence has been obtained from both radioligand binding and co-immunoprecipitation studies for the co-assembly of Dalpha6 and Dalpha7 into heteromeric cell surface complexes.  相似文献   

16.
李飞  韩召军 《动物学报》2005,51(5):867-878
乙酰胆碱受体在神经突触传导过程中具有重要作用,也是氯化胆碱类杀虫剂的作用靶标。采用RACE技术,成功地从棉蚜中克隆了3个nAChR亚基,其中2个为α亚型, 1个为β亚型,分别命名为Agα1、Agα2和Agβ1。通过锚定mRNA的5′mG结构, 5′RACE结果表明Agβ1有三个不同的剪接变体,具有不同长度的5′UTR区,表明Agβ1亚基具有多重的转录起始位点。其中,最短的剪接变体Agβ1C在蛋白编码区域也存在选择性剪接,位于D环区域的186 bp碱基缺失。3′RACE实验结果表明,Agα1亚基虽然具有ploy ( A)和加尾信号AATAAA等完整的mRNA基因结构,但缺失了终止子和乙酰胆碱受体α亚基保守的第4个跨膜区,文中对此做了进一步分析。分子进化树的分析表明,昆虫乙酰胆碱受体亚基应当被划分为三个不同的亚类群αⅠ,αⅡandβ。本文的研究揭示了昆虫乙酰胆碱受体亚基复杂的基因结构[动物学报51 (5) : 867 -878 , 2005]。  相似文献   

17.
烟碱型乙酰胆碱受体(nAChR)介导昆虫中枢神经系统中胆碱能突触兴奋性神经递质的快速传递,也是新烟碱类杀虫剂和多杀菌素的作用靶标。本研究利用RT-PCR和RACE技术,克隆了小菜蛾Plutella xylostella nAChR α亚基的一个新基因(Pxα8)的全长cDNA(GenBank登录号为EU914853)。Pxα8的cDNA序列全长1 744 bp,开放阅读框为1 602 bp,编码534个氨基酸,具有nAChR α亚基的典型特征,与其他昆虫nAChR α8亚基具有77%~96%的相似性,与果蝇nAChR β2亚基具有76%的相似性。Pxα8的开放阅读框存在单核苷酸多态性位点,导致多个位点氨基酸的替换。雌性4龄幼虫的多态性位点多于雄性4龄幼虫,而且雌、雄4龄幼虫的多态性位点均不相同。半定量RT-PCR研究结果表明,Pxα8 mRNA在成虫期表达量高于蛹期和4龄幼虫期。本研究结果为进一步研究小菜蛾nAChR 亚基的多样性和对多杀菌素的靶标抗性机制提供重要基础。  相似文献   

18.
Activation by acetylcholine of a nicotinic acetylcholine receptor on the membrane of bovine chromaffin cells leads to membrane depolarization and to the subsequent triggering of catecholamine secretion. It is evident that acetylcholine receptors play a central role in the initial phase of the secretion process and, therefore, an extensive characterization of their molecular components and properties is of fundamental interest. With this intention, we have screened bovine adrenal medullary cDNA libraries with a probe coding for a fragment of the rat muscle acetylcholine receptor subunit. Several cDNA clones were isolated. The longest cDNA had an open reading frame encoding a 495-amino acid protein with a molecular weight of 56,911. The deduced primary structure contains features that indicate that the encoded protein is an or acetylcholine binding subunit, and, in fact, it manifests significant sequence similarity to previously cloned subunits. Sequence identity is particularly high with the 3 subunit, which is expressed in the rat pheochromocytoma PC12 cell line and in several brain areas, and consequently, it is considered a component of a neuronal acetylcholine receptor. Accordingly, the present results suggest that the agonist binding subunit of the nicotinic acetylcholine receptor from bovine chromaffin cells is an 3-type subunit, corroborating previous immunological and pharmacological evidence for the presence of a neuronal nicotinic receptor in chromaffin cells.Abbreviations used nAChR nicotinic acetylcholine receptor - SDS sodium dodecyl sulfate - SSC 0.15 M NaCl and 0.015 M sodium citrate - kb kilobases - bp base pairs  相似文献   

19.
邱高辉  韩召军 《昆虫学报》2007,50(8):762-768
昆虫烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor, nAChR)是杀虫剂的重要作用靶标之一。本研究利用简并引物PCR和半巢式PCR技术从麦长管蚜Sitobion avenae (Fabricius)中克隆nAChR基因,成功地获得了5个α型nAChR亚基的cDNA片段。根据5个α亚基片段设计特异引物,结合快速扩增cDNA末端(RACE)技术,成功克隆了5个α型亚基的全长,并发现α5亚基有两种存在形式,它们仅在胞外区有一段175 bp的片段有差异。序列分析发现,这些基因均具有nAChR基因家族的典型特征,并与已报道的其他昆虫的烟碱型乙酰胆碱受体的相应亚基具有很高的同源性。该研究为进一步利用基因表达技术研究昆虫nAChR的天然亚基组成,以及分析麦长管蚜对新烟碱类杀虫剂的靶标抗性,奠定了基础。  相似文献   

20.
The autonomic nervous system is known to mediate mast cell activation. We investigated expression of nicotinic acetylcholine receptors (nAChRs) in mucosal-type mast cells and their contribution to the regulation of mast cell activation. Expression of mRNA of nAChR α4, α7, and β2 subunits were detected in specially differentiated mucosal-type murine bone marrow-derived mast cells (mBMMCs). Pretreatment with non-specific nAChRs agonists, acetylcholine, nicotine and epibatidine and a specific α7 subunit agonist GTS-21 significantly inhibited antigen-induced degranulation of mBMMCs in a dose-dependent manner and GTS-21-induced inhibition was significantly blocked by α7 subunit antagonist, α-bungarotoxin. Furthermore, confocal microscopy also demonstrated surface binding of α-bungarotoxin on mBMMCs. Our findings indicate that mucosal mast cell activation may be negatively regulated mainly through nAChR α7 subunit, suggesting that nAChRs are involved in neuronal-mucosal mast cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号