首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The locus responsible for the appearance of muscular hypertrophy (mh) in double muscled cattle breeds has recently been shown to encode a secreted growth factor designated myostatin (MSTN). This conclusion was based in part on the placement of MSTN in the interval to which mh had been mapped on bovine chromosome 2 (BTA2). During the mapping phase of the study, numerous yeast artificial chromosome (YAC) clones were isolated that contained genetic markers closely linked to mh. Other YACs and cosmids were identified that contained genes selected from human chromosome 2q (HSA2q), with the goal of defining the position of breakpoints in conserved synteny between the bovine and human comparative maps, thereby permitting accurate selection of positional candidate genes. An efficient subcloning procedure was developed to obtain microsatellites (ms) from YAC clones, to increase the number of informative meioses in herds segregating for mh. The same procedure was used to place the human orthologues of engrailed-1 (EN1), interleukin 1 beta (IL1B), and paired-box-containing 8 (PAX8) genes on the cattle map to further define the positions of breakpoints in conserved synteny and gene order. Twenty-three of 28 ms identified from YAC subclone libraries were informative in the mapping families. Seven mapped to the centromeric end of BTA2, which contains the mh locus, improving marker density and informativeness. The two MSTN and four EN1 gene-associated ms markers developed from YACs, map to positions 1·5 and 61·6 cm in the BTA2 linkage group, respectively. In addition, ms markers developed from cosmids containing either IL1B or PAX8, map to positions 56·6 and 56·9 cm in the BTA11 linkage group, respectively. These linkage data confirm the location and orientation of orthologous segments of HSA2q that were previously indistinguishable on the bovine map, and demonstrates the presence of microrearrangements of gene order (segments <10 cm ) and conserved synteny between the human and bovine genomes.  相似文献   

2.
The Spanish ``Asturiana' cattle breed is characterized by the segregation of a genetically determined muscular hypertrophy referred to as double-muscling or ``culones'. We demonstrate by linkage analysis that this muscular hypertrophy involves the mh locus previously shown to cause double-muscling in the Belgian Blue cattle breed, pointing towards locus homogeneity of this trait across both breeds. Moreover, using a twopoint and multipoint maximum likelihood approach, we show that flanking microsatellite markers are in linkage disequilibrium with the mh locus in both breeds albeit with different alleles. Finally, we discuss how allelic homogeneity across breeds might be exploited to achieve efficient genetic fine-mapping of the mh locus. Received: 13 September 1996 / Accepted: 20 January 1997  相似文献   

3.
Myostatin is an extracellular negative regulator of muscle growth with an important role in bovine muscular hypertrophy. It belongs to the transforming growth factor beta (TGFbeta) superfamily, and has structural and functional characteristics similar to those of its other, members. Based on these characteristics, we designed three gene constructs in order to create a series of dominant negative (DN) alleles for murine myostatin. As a first requirement for any DN strategy, we first showed that each of the three mutant DN monomers were able to interact with wild type mature myostatin (wt-Mstn), both in a pull-down and a mammalian two-hybrid assay. In addition, the degree of DN-Mstn/wt-Mstn interaction was similar to that of wt-Mstn/wt-Mstn. These results suggest that the three designed alleles are good candidates for use in a DN-based strategy for generating muscular hypertrophy in cattle.  相似文献   

4.
The ``double-muscling' (mh) locus has been localized to an interval between the centromere and the microsatellite marker TGLA44 on bovine Chromosome (Chr) 2 (BTA2). We identified segments of conserved synteny that correspond to this region of BTA2 by assigning large genomic clones containing bovine homologs of seven genes from the long arm of human Chr 2 (HSA2q). Polymorphic markers developed from these clones integrated the physical and linkage maps of BTA2 from 2q12 to 2q44 and extended genetic coverage towards the centromere. This comparative analysis suggests the mh locus resides on HSA2q near both the protein C and collagen type III alpha-1 genes. Overall, our data reveal a complex rearrangement of gene order between BTA2q12-44 and HSA2q14-37 that underscores the need to establish boundaries of conserved synteny when applying comparative mapping information to identify genes or traits of interest. Received: 3 March 1997 / Accepted: 12 May 1997  相似文献   

5.
The mh gene causing double-muscling in cattle maps to bovine Chromosome 2   总被引:1,自引:0,他引:1  
While the hereditary nature of the double-muscling phenotype (a generalized muscular hypertrophy documented in several cattle breeds) is well established, its precise segregation mode has remained controversial. Both monogenic models (autosomal dominant or recessive) and oligogenic models have been proposed. Using a panel of 213 bovine microsatellite markers, and an experimental pedigree obtained by backcrossing double-muscled (Belgian Blue)xconventional (Friesian) F1 dams to double-muscled sire, we have mapped a locus on bovine Chromosome (Chr) 2 that accounts for all the phenotypic variance in the backcross generation. This locus, referred to as mh (muscular hypertrophy), has been positioned with respect to a map composed of seven Chr 2-specific microsatellites, at 2 cM from the closest marker. This result confirms the validity in the Belgian Blue population of the monogenic model involving an autosomal mh locus, characterized by a wild-type + and a recessive mh allele, causing the double-muscling phenotype in the homozygous condition. The linkage relationship between the mh locus and the Chr 2 markers was confirmed in three informative pedigrees collected from the general Belgian Blue Cattle population, reinforcing the notion of genetic homogeneity of the double-muscling trait in this breed. This work paves the way towards marker-assisted selection for or against the double-muscling trait, and towards positional cloning of the corresponding gene.  相似文献   

6.
Clenbuterol, a β2‐adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin‐like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol‐induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol‐induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Myostatin, which is a member of the TGF-beta superfamily, is a negative regulator of skeletal muscle formation. Double-muscled Piedmontese cattle have a C313Y mutation in myostatin and show increased skeletal muscle mass which resulted from an increase of myofiber number (hyperplasia) without that of myofiber size (hypertrophy). To examine whether this mutation in myostatin gene affects muscle development in a dominant negative manner, we generated transgenic mice overexpressing the mutated gene. The transgenic mice exhibited dramatic increases in the skeletal muscle mass resulting from hyperplasia without hypertrophy. In contrast, it has been reported that a myostatin mutated at its cleavage site produces hypertrophy without hyperplasia in the muscle. Thus, these results suggest that (1) the myostatin containing the missense mutation exhibits a dominant negative activity and that (2) there are two types in the dominant negative form of myostatin, causing either hypertrophy or hyperplasia.  相似文献   

8.
By using a conditional gene targeting approach exploiting the cre-lox system, we show that postnatal inactivation of the myostatin gene in striated muscle is sufficient to cause a generalized muscular hypertrophy of the same magnitude as that observed for constitutive myostatin knockout mice. This formally demonstrates that striated muscle is the production site of functional myostatin and that this member of the TGFbeta family of growth and differentiation factors regulates muscle mass not only during early embryogenesis but throughout development. It indicates that myostatin antagonist could be used to treat muscle wasting and to promote muscle growth in man and animals.  相似文献   

9.
Since its identification in 1997, myostatin has been considered as a novel and unique negative regulator of muscle growth, as mstn-/- mice display a dramatic and widespread increase in skeletal muscle mass. Myostatin also appears to be involved in muscle homeostasis in adults as its expression is regulated during muscle atrophy. Moreover, deletion of the myostatin gene seems to affect adipose tissue mass in addition to skeletal muscle mass. Natural myostatin gene mutations occur in cattle breeds such as Belgian Blue, exhibiting an obviously increased muscle mass, but also in humans, as has recently been demonstrated. Here we review these natural mutations and their associated phenotypes as well as the physiological influence of the alterations in myostatin expression and the physiopathological consequences of changes in myostatin expression, especially with regard to satellite cells. Interestingly, studies have demonstrated some rescue effects of myostatin in muscular pathologies such as myopathies, providing a novel pharmacological strategy for treatment. Furthermore, the myostatin pathway is now better understood thanks to in vitro studies and it consists of inhibition of myoblast progression in the cell cycle, inhibition of myoblast terminal differentiation, in both cases associated to protection from apoptosis. The molecular pathway driving the myogenic myostatin influence is currently under extensive study and many molecular partners of myostatin have been identified, suggesting novel potent muscle growth enhancers for both human and agricultural applications.  相似文献   

10.

Background

Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies.

Methodology/Principal Findings

Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose–dependent manner.

Conclusions/Significance

Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.  相似文献   

11.
Myostatin, amember of the transforming growth factor- superfamily, is a secretedgrowth factor that is proteolytically processed to give COOH-terminalmature myostatin and NH2-terminal latency-associated peptide in myoblasts. Piedmontese cattle are a heavy-muscled breed thatexpress a mutated form of myostatin in which cysteine(313) is substituted with tyrosine. Here we havecharacterized the biology of this mutated Piedmontese myostatin.Northern and Western analyses indicate that there is increasedexpression of myostatin mRNA and precursor myostatin protein in theskeletal muscle of Piedmontese cattle. In contrast, a decrease inmature myostatin was observed in Piedmontese skeletal muscle. However,there is no detectable change in the circulatory levels of maturemyostatin in Piedmontese cattle. Myoblast proliferation assay performedwith normal and Piedmontese myostatin indicated that mature wild-typemyostatin protein inhibited the proliferation ofC2C12 myoblasts. Piedmontese myostatin, bycontrast, failed to inhibit myoblast proliferation. In addition, whenadded in molar excess, Piedmontese myostatin acted as a potent"competitive inhibitor" molecule. These results indicate that, inPiedmontese myostatin, substitution of cysteine with tyrosineresults in the distortion of the "cystine knot" structure and aloss of biological activity of the myostatin. This mutation alsoappears to affect either processing or stability of mature myostatinwithout altering the secretion of myostatin.

  相似文献   

12.
Myostatin deficiency leads in skeletal muscle overgrowth but the precise molecular mechanisms underlying this hypertrophy are not well understood. In this study, to gain insight into the role of endogenous myostatin in the translational regulation, we used an in vitro model of cultured satellite cells derived from myostatin knock‐out mice. Our results show that myostatin knock‐out myotubes are larger than control myotubes and that this phenotype is associated with an increased activation of the Akt/mTOR signaling pathway, a known regulator of muscle hypertrophy. These results demonstrate that hypertrophy due to myostatin deficiency is preserved in vitro and suggest that myostatin deletion results in an increased protein synthesis. Accordingly, the rates of global RNA content, polysome formation and protein synthesis are all increased in myostatin‐deficient myotubes while they are counteracted by the addition of recombinant myostatin. We furthermore demonstrated that genetic deletion of myostatin stimulates cap‐dependent translation by positively regulating assembly of the translation preinitiation complex. Together the data indicate that myostatin controls muscle hypertrophy in part by regulating protein synthesis initiation rates, that is, translational efficiency. J. Cell. Biochem. 112: 3531–3542, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.  相似文献   

14.
15.
Myostatin rapid sequence evolution in ruminants predates domestication   总被引:7,自引:1,他引:6  
Myostatin (GDF-8) is a negative regulator of skeletal muscle development. This gene has previously been implicated in the double muscling phenotype in mice and cattle. A systematic analysis of myostatin sequence evolution in ruminants was performed in a phylogenetic context. The myostatin coding sequence was determined from duiker (Sylvicapra grimmia caffra), eland (Taurotragus derbianus), gaur (Bos gaurus), ibex (Capra ibex), impala (Aepyceros melampus rednilis), pronghorn (Antilocapra americana), and tahr (Hemitragus jemlahicus). Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (Ka/Ks) indicates that positive selection may have been operating on this gene during the time of divergence of Bovinae and Antilopinae, starting from approximately 23 million years ago, a period that appears to account for most of the sequence difference between myostatin in these groups. These periods of positive selective pressure on myostatin may correlate with changes in skeletal muscle mass during the same period.  相似文献   

16.
Myostatin is a dominant inhibitor of skeletal muscle development and growth. As transgenic over‐expression of myostatin propeptide dramatically enhanced muscle mass, we hypothesized that administration of myostatin propeptide will increase muscle growth. In this study, the wild‐type form of porcine myostatin propeptide and its mutated form at the cleavage site of metalloproteinases of BMP‐1/TLD family were produced from insect cells. In vitro A204 cells reporter assays showed that both wild‐type and the mutated propeptides depressed myostatin activity. The recombinant propeptides at four‐fold myostatin concentration can effectively block myostatin function during co‐incubation with A204 cells. In particular, the mutated propeptide appeared much more effective than wild‐type propeptide over a long period during the in vitro co‐incubation. Administration of the mutated propeptide to neonatal mice at the age of 11 and 18 days was tested and showed significant increase in growth performance by 11–15% from the age of 25 to 57 days (P < 0.05). The major skeletal muscles of mice that were injected with mutated propeptide were 13.5–24.8% heavier than the control group (P < 0.05) as a result of muscle fiber hypertrophy. In conclusion, administration of the mutated myostatin propeptide during the neonatal period is an effective way for promoting muscle growth. Mol. Reprod. Dev. 77: 76–82, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Myostatin is a negative regulator of muscle growth, and absence of the functional myostatin protein leads to the heavy muscle phenotype in both mouse and cattle. Although the role of myostatin in controlling muscle mass is established, little is known of the mechanisms regulating the expression of the myostatin gene. In this study, we have characterized the murine myostatin promoter in vivo. Various constructs of the murine myostatin promoter were injected into the quadriceps muscle of mice, and the reporter luciferase activity was analyzed. The results indicate that of the seven E-boxes present in the 2.5-kb fragment of the murine myostatin promoter, the E5 E-box plays an important role in the regulation of promoter activity in vivo. Furthermore, the in vitro studies demonstrated that MyoD preferentially binds and upregulates the murine myostatin promoter activity. We also analyzed the activity of the bovine and murine promoters in murine skeletal muscle and showed that, despite displaying comparable levels of activity in murine myoblast cultures, bovine myostatin promoter activity is much weaker than murine myostatin promoter in mice. Finally, we demonstrate that in vivo, the 2.5-kb region of the murine myostatin promoter is sufficient to drive the activity of the reporter gene in a fiber type-specific manner. myogenic regulatory factor; E-box; naked DNA  相似文献   

18.
The growth of muscle fibers can be negatively regulated by bovine myostatin. The first two exons of myostatin gene code for the N-propeptide and its third exon codes for the C-polypeptide. Myostatin is secreted as a latent configuration formed by dimerization of two matured C peptides non-covalently linked with the N terminal pro-peptide. Pro-peptide has two distinct functions in guiding protein folding and regulating biological activity of myostatin. When the structure of the leader peptide is altered via mutations resulting in more tight binding with the mature peptide, myostatin function is inhibited, resulting in the changes of P21 and CDK2 expression levels which are relatedto the regulation of cell cycle. In the present study, the coding region of bMSTN (bovine myostatin) gene was amplified and mutated (A224C and G938A) through fusion PCR, and the mutated bMSTN gene (bMSTN-mut) was inserted in frame into the pEF1a-IRES-DsRed-Express2 vector and transfected into bovine fibroblast cells. The expression levels of bMSTN-mut, P21 and CDK2 (cyclin dependent kinase 2) were examined with qPCR and Western-blotting. Changes in cell cycle after transfection were also analyzed with flow cytometry. The results indicated that leader peptide mutation resulted in down-regulation of P21 expression levels and up-regulation of CDK2 expression levels. The flow cytometry results showed that the proportion of cells in the G0/G1-phase was lower and that of cells in the S-phase was higher in bMSTN-mut transfected group than that in the control group. The proliferation rate of bMSTN-mut transfected cells was also significantly higher than that of the control cells. In conclusion, the studies have shown that the pEF1a-IRES-DsRed-Express2–bMSTN-mut recombinant plasmid could effectively promote the proliferation of bovine fibroblast cells. The site-directed mutagenesis of bMSTN gene leader peptide and in vitro expression in bovine fibroblast cells could be helpful to further the studies of bMSTN in regulating bovine muscle cell growth and development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号